Mechanism of CB1954 reduction by Escherichia coli nitroreductase

2009 ◽  
Vol 37 (2) ◽  
pp. 413-418 ◽  
Author(s):  
Andrew Christofferson ◽  
John Wilkie

NTR (nitroreductase NfsB from Escherichia coli) is a flavoprotein with broad substrate specificity, reducing nitroaromatics and quinones using either NADPH or NADH. One of its substrates is the prodrug CB1954 (5-[aziridin-1-yl]-2,4-dinitrobenzamide), which is converted into a cytotoxic agent; so NTR/CB1954 has potential for use in cancer gene therapy. However, wild-type NTR has poor kinetics and binding with CB1954, and the mechanism for the reduction of CB1954 by NTR is poorly understood. Computational methods have been utilized to study potential underlying reaction mechanisms so as to identify the order of electron and proton transfers that make up the initial reduction step and the sources of the protons. We have used Molecular Dynamics to examine the nature of the active site of the wild-type enzyme and the preferred binding mode of the substrate. A combination of these results has allowed us to unequivocally identify the reaction mechanism for the reduction of CB1954 by NTR.

2002 ◽  
Vol 365 (3) ◽  
pp. 809-816 ◽  
Author(s):  
Colin G. SAYSELL ◽  
Winston S. TAMBYRAJAH ◽  
Jeremy M. MURRAY ◽  
Carrie M. WILMOT ◽  
Simon E.V. PHILLIPS ◽  
...  

Copper amine oxidases are homodimeric enzymes containing one Cu2+ ion and one 2,4,5-trihydroxyphenylalanine quinone (TPQ) per monomer. Previous studies with the copper amine oxidase from Escherichia coli (ECAO) have elucidated the structure of the active site and established the importance in catalysis of an active-site base, Asp-383. To explore the early interactions of substrate with enzyme, we have used tranylcypromine (TCP), a fully reversible competitive inhibitor, with wild-type ECAO and with the active-site base variants D383E and D383N. The formation of an adduct, analogous to the substrate Schiff base, between TCP and the TPQ cofactor in the active site of wild-type ECAO and in the D383E and D383N variants has been investigated over the pH range 5.5–9.4. For the wild-type enzyme, the plot of the binding constant for adduct formation (Kb) against pH is bell-shaped, indicating two pKas of 5.8 and ∼8, consistent with the preferred reaction partners being the unprotonated active-site base and the protonated TCP. For the D383N variant, the reaction pathway involving unprotonated base and protonated TCP cannot occur, and binding must follow a less favoured pathway with unprotonated TCP as reactant. Surprisingly, for the D383E variant, the Kb versus pH behaviour is qualitatively similar to that of D383N, supporting a reaction pathway involving unprotonated TCP. The TCP binding data are consistent with substrate binding data for the wild type and the D383E variant using steady-state kinetics. The results provide strong support for a protonated amine being the preferred substrate for the wild-type enzyme, and emphasize the importance of the active-site base, Asp-383, in the primary binding event.


2005 ◽  
Vol 392 (1) ◽  
pp. 55-63 ◽  
Author(s):  
George Nicola ◽  
Alena Fedarovich ◽  
Robert A. Nicholas ◽  
Christopher Davies

Penicillin-binding proteins (PBPs), which are the lethal targets of β-lactam antibiotics, catalyse the final stages of peptidoglycan biosynthesis of the bacterial cell wall. PBP 5 of Escherichia coli is a D-alanine CPase (carboxypeptidase) that has served as a useful model to elucidate the catalytic mechanism of low-molecular-mass PBPs. Previous studies have shown that modification of Cys115 with a variety of reagents results in a loss of CPase activity and a large decrease in the rate of deacylation of the penicilloyl–PBP 5 complex [Tamura, Imae and Strominger (1976) J. Biol. Chem. 251, 414–423; Curtis and Strominger (1978) J. Biol. Chem. 253, 2584–2588]. The crystal structure of wild-type PBP 5 in which Cys115 fortuitously had formed a covalent adduct with 2-mercaptoethanol was solved at 2.0 Å (0.2 nm) resolution, and these results provide a structural rationale for how thiol-directed reagents lower the rate of deacylation. When compared with the structure of the unmodified wild-type enzyme, a major change in the architecture of the active site is observed. The two largest differences are the disordering of a loop comprising residues 74–90 and a shift in residues 106–111, which results in the displacement of Ser110 of the SXN active-site motif. These results support the developing hypothesis that the SXN motif of PBP 5, and especially Ser110, is intimately involved in the catalytic mechanism of deacylation.


1990 ◽  
Vol 271 (2) ◽  
pp. 487-491 ◽  
Author(s):  
A Hädener ◽  
P R Alefounder ◽  
G J Hart ◽  
C Abell ◽  
A R Battersby

A new construct carrying the hemC gene was transformed into Escherichia coli, resulting in approx. 1000-fold over-expression of hydroxymethylbilane synthase (HMBS). This construct was used to generate HMBS in which (a) Lys-55, (b) Lys-59 and (c) both Lys-55 and Lys-59 were replaced by glutamine (K55Q, K59Q and K55Q-K59Q respectively). All three modified enzymes are chromatographically separable from wild-type enzyme. Kinetic studies showed that the substitution K55Q has little effect whereas K59Q causes a 25-fold decrease in Kapp. cat./Kapp. m. Treatment of K55Q, K59Q and K55Q-K59Q separately with pyridoxal 5′-phosphate and NaBH4 resulted in incomplete and non-specific reaction with the remaining lysine residues. Pyridoxal modification of Lys-59 in the K55Q mutant caused greater enzymic inactivation than similar modification of Lys-55 in K59Q. The results in sum show that, though Lys-55 and Lys-59 may be at or near the active site, neither is indispensable for the catalytic activity of HMBS.


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1208 ◽  
Author(s):  
Mohamed H. Habib ◽  
Henriëtte J. Rozeboom ◽  
Marco W. Fraaije

DyP-type peroxidases are heme-containing enzymes that have received increasing attention over recent years with regards to their potential as biocatalysts. A novel DyP-type peroxidase (CboDyP) was discovered from the alkaliphilic cellulomonad, Cellulomonas bogoriensis, which could be overexpressed in Escherichia coli. The biochemical characterization of the recombinant enzyme showed that it is a heme-containing enzyme capable to act as a peroxidase on several dyes. With the tested substrates, the enzyme is most active at acidic pH values and is quite tolerant towards solvents. The crystal structure of CboDyP was solved which revealed atomic details of the dimeric heme-containing enzyme. A peculiar feature of CboDyP is the presence of a glutamate in the active site which in most other DyPs is an aspartate, being part of the DyP-typifying sequence motif GXXDG. The E201D CboDyP mutant was prepared and analyzed which revealed that the mutant enzyme shows a significantly higher activity on several dyes when compared with the wild-type enzyme.


1991 ◽  
Vol 277 (3) ◽  
pp. 647-652 ◽  
Author(s):  
F Jacob ◽  
B Joris ◽  
J M Frère

By using site-directed mutagenesis, the active-site serine residue of the Streptomyces albus G beta-lactamase was substituted by alanine and cysteine. Both mutant enzymes were produced in Streptomyces lividans and purified to homogeneity. The cysteine beta-lactamase exhibited a substrate-specificity profile distinct from that of the wild-type enzyme, and its kcat./Km values at pH 7 were never higher than 0.1% of that of the serine enzyme. Unlike the wild-type enzyme, the activity of the mutant increased at acidic pH values. Surprisingly, the alanine mutant exhibited a weak but specific activity for benzylpenicillin and ampicillin. In addition, a very small production of wild-type enzyme, probably due to mistranslation, was detected, but that activity could be selectively eliminated. Both mutant enzymes were nearly as thermostable as the wild-type.


1990 ◽  
Vol 68 (7-8) ◽  
pp. 1037-1044 ◽  
Author(s):  
Peter C. Loewen ◽  
Jacek Switala ◽  
Mark Smolenski ◽  
Barbara L. Triggs-Raine

Hydroperoxidase I (HPI) of Escherichia coli is a bifunctional enzyme exhibiting both catalase and peroxidase activities. Mutants lacking appreciable HPI have been generated using nitrosoguanidine and the gene encoding HPI, katG, has been cloned from three of these mutants using either classical probing methods or polymerase chain reaction amplification. The mutant genes were sequenced and the changes from wild-type sequence identified. Two mutants contained G to A changes in the coding strand, resulting in glycine to aspartate changes at residues 119 (katG15) and 314 (katG16) in the deduced amino acid sequence of the protein. A third mutant contained a C to T change resulting in a leucine to phenylalanine change at residue 139 (katG14). The Phe139-, Asp119-, and Asp314-containing mutants exhibited 13, < 1, and 18%, respectively, of the wild-type catalase specific activity and 43, 4, and 45% of the wild-type peroxidase specific activity. All mutant enzymes bound less protoheme IX than the wild-type enzyme. The sensitivities of the mutant enzymes to the inhibitors hydroxylamine, azide, and cyanide and the activators imidazole and Tris were similar to those of the wild-type enzyme. The mutant enzymes were more sensitive to high temperature and to β-mercaptoethanol than the wild-type enzyme. The pH profiles of the mutant catalases were unchanged from the wild-type enzyme.Key words: catalase, hydroperoxidase I, mutants, sequence analysis.


1999 ◽  
Vol 343 (2) ◽  
pp. 361-369 ◽  
Author(s):  
Patrick MASSON ◽  
Cécile CLÉRY ◽  
Patrice GUERRA ◽  
Arnaud REDSLOB ◽  
Christine ALBARET ◽  
...  

Wild-type human butyrylcholinesterase (BuChE) and Glu-197 → Asp and Asp-70 → Gly mutants (E197D and D70G respectively) were inhibited by di-isopropyl phosphorofluoridate under standard conditions of pH, temperature and pressure. The effect of hydrostatic and osmotic pressures on the aging process (dealkylation of an isopropyl chain) of phosphorylated enzymes [di-isopropylated (DIP)-BuChE] was investigated. Hydrostatic pressure markedly increased the rate of aging of wild-type enzyme. The average activation volume (δV≠) for the dealkylation reaction was -170 ml/mol for DIP wild-type BuChE. On the other hand, hydrostatic pressure had little effect on the aging of the DIP mutants (δV≠ = -2.6 ml/mol for E197D and -2 ml/mol for D70G), suggesting that the transition state of the aging process was associated with an extended hydration and conformational change in wild-type BuChE, but not in the mutants. The rate of aging of wild-type and mutant enzymes decreased with osmotic pressure, allowing very large positive osmotic activation volumes (δV≠osm) to be estimated, thus probing the participation of water in the aging process. Molecular dynamics simulations performed on the active-site gorge of the wild-type DIP adduct showed that the isopropyl chain involved in aging was highly solvated, supporting the idea that water is important for stabilizing the transition state of the dealkylation reaction. Wild-type BuChE was inhibited by soman (pinacolyl methylphosphonofluoridate). Electrophoresis performed under high pressure [up to 2.5 kbar (1 bar = 105 Pa)] showed that the soman-aged enzyme did not pass through a pressure-induced, molten-globule transition, unlike the native wild-type enzyme. Likewise, this transition was not seen for the native E197D and D70G mutants, indicating that these mutants are resistant to the penetration of water into their structure. The stability energetics of native and soman-aged wild-type BuChE were determined by differential scanning calorimetry. The pH-dependence of the midpoint transition temperature of endotherms indicated that the high difference in stabilization energy between aged and native BuChE (δδG = 23.7 kJ/mol at pH 8.0) is mainly due to the salt bridge between protonated His-438 and PO-, with pKHis-438 = 8.3. A molecular dynamics simulation on the MIP adduct showed that there is no water molecule around the ion pair. The ‘hydrostatic versus osmotic pressure’ approach probed the importance of water in aging, and also revealed that Asp-70 and Glu-197 are the major residues controlling both the dynamics and the structural organization of the water/hydrogen-bond network in the active-site gorge of BuChE. In wild-type BuChE both residues function like valves, whereas in the mutant enzymes the water network is slack, and residues Gly-70 and Asp-197 function like check valves, i.e. forced penetration of water into the gorge is not easily achieved, thereby facilitating the release of water.


2016 ◽  
Vol 82 (8) ◽  
pp. 2247-2255 ◽  
Author(s):  
Lei Wang ◽  
Xuguo Duan ◽  
Jing Wu

ABSTRACTCyclodextrin glycosyltransferases (CGTases) (EC 2.4.1.19) catalyze the conversion of starch or starch derivates into mixtures of α-, β-, and γ-cyclodextrins. Because time-consuming and expensive purification procedures hinder the widespread application of single-ingredient cyclodextrins, enzymes with enhanced specificity are needed. In this study, we tested the hypothesis that the α-cyclodextrin selectivity ofPaenibacillus maceransα-CGTase could be augmented by masking subsite −7 of the active site, blocking the formation of larger cyclodextrins, particularly β-cyclodextrin. Five single mutants and three double mutants designed to remove hydrogen-bonding interactions between the enzyme and substrate at subsite −7 were constructed and characterized in detail. Although the rates of α-cyclodextrin formation varied only modestly, the rate of β-cyclodextrin formation decreased dramatically in these mutants. The increase in α-cyclodextrin selectivity was directly proportional to the increase in the ratio of theirkcatvalues for α- and β-cyclodextrin formation. The R146A/D147P and R146P/D147A double mutants exhibited ratios of α-cyclodextrin to total cyclodextrin production of 75.1% and 76.1%, approximately one-fifth greater than that of the wild-type enzyme (63.2%), without loss of thermostability. Thus, these double mutants may be more suitable for the industrial production of α-cyclodextrin than the wild-type enzyme. The production of β-cyclodextrin by these mutants was almost identical to their production of γ-cyclodextrin, which was unaffected by the mutations in subsite −7, suggesting that subsite −7 was effectively blocked by these mutations. Further increases in α-cyclodextrin selectivity will require identification of the mechanism or mechanisms by which these small quantities of larger cyclodextrins are formed.


Sign in / Sign up

Export Citation Format

Share Document