Escape from stress granule sequestration: another way to drug resistance?

2010 ◽  
Vol 38 (6) ◽  
pp. 1537-1542 ◽  
Author(s):  
Ernesto Yagüe ◽  
Selina Raguz

Overexpression of P-glycoprotein, encoded by the MDR1 (multidrug resistance 1) gene, is often responsible for multidrug resistance and chemotherapy failure in cancer. We have demonstrated that, in leukaemic cells, P-glycoprotein expression is regulated at the translational level. More recently, we have shown that in cells overexpressing P-glycoprotein, MDR1 mRNA does not aggregate into translationally silent stress granules. Importantly, this is not unique for MDR1, since other transcripts encoding transmembrane proteins, and which are thus translated at the endoplasmic reticulum, follow the same pattern. By using a series of chimaeric transcripts, we have demonstrated that transcript localization at the endoplasmic reticulum bypasses the signals dictating stress granule sequestration. Polysome profile analyses and protein synthesis experiments indicate that, upon stress withdrawal, endoplasmic-reticulum-bound transcripts resume translation faster than those at the cytosol, which have been sequestered into stress granules. This may represent a novel mechanism by which drug-resistant cells respond quickly to stress, helping them to survive the cytotoxic effect of chemotherapeutic drugs.

Science ◽  
2020 ◽  
Vol 367 (6477) ◽  
pp. eaay7108 ◽  
Author(s):  
Jason E. Lee ◽  
Peter I. Cathey ◽  
Haoxi Wu ◽  
Roy Parker ◽  
Gia K. Voeltz

Tethered interactions between the endoplasmic reticulum (ER) and other membrane-bound organelles allow for efficient transfer of ions and/or macromolecules and provide a platform for organelle fission. Here, we describe an unconventional interface between membraneless ribonucleoprotein granules, such as processing bodies (P-bodies, or PBs) and stress granules, and the ER membrane. We found that PBs are tethered at molecular distances to the ER in human cells in a tunable fashion. ER-PB contact and PB biogenesis were modulated by altering PB composition, ER shape, or ER translational capacity. Furthermore, ER contact sites defined the position where PB and stress granule fission occurs. We thus suggest that the ER plays a fundamental role in regulating the assembly and disassembly of membraneless organelles.


2007 ◽  
Vol 406 (3) ◽  
pp. 445-455 ◽  
Author(s):  
Rebecca A. Randle ◽  
Selina Raguz ◽  
Christopher F. Higgins ◽  
Ernesto Yagüe

Overexpression of P-glycoprotein, encoded by the MDR1 (multidrug resistance 1) gene, is often responsible for multidrug resistance in acute myeloid leukaemia. We have shown previously that MDR1 (P-glycoprotein) mRNA levels in K562 leukaemic cells exposed to cytotoxic drugs are up-regulated but P-glycoprotein expression is translationally blocked. In the present study we show that cytotoxic drugs down-regulate the Akt signalling pathway, leading to hypophosphorylation of the translational repressor 4E-BP [eIF (eukaryotic initiation factor) 4E-binding protein] and decreased eIF4E availability. The 5′-end of MDR1 mRNA adopts a highly-structured fold. Fusion of this structured 5′-region upstream of a reporter gene impeded its efficient translation, specifically under cytotoxic stress, by reducing its competitive ability for the translational machinery. The effect of cytotoxic stress could be mimicked in vivo by blocking the phosphorylation of 4E-BP by mTOR (mammalian target of rapamycin) using rapamycin or eIF4E siRNA (small interfering RNA), and relieved by overexpression of either eIF4E or constitutively-active Akt. Upon drug exposure MDR1 mRNA was up-regulated, apparently stochastically, in a small proportion of cells. Only in these cells could MDR1 mRNA compete successfully for the reduced amounts of eIF4E and translate P-glycoprotein. Consequent drug efflux and restoration of eIF4E availability results in a feed-forward relief from stress-induced translational repression and to the acquisition of drug resistance.


2004 ◽  
Vol 14 (5) ◽  
pp. 309-318 ◽  
Author(s):  
Monika Hitzl ◽  
Elke Schaeffeler ◽  
Berthold Hocher ◽  
Torsten Slowinski ◽  
Horst Halle ◽  
...  

2008 ◽  
Vol 295 (3) ◽  
pp. C807-C818 ◽  
Author(s):  
Siying Ye ◽  
Daniel P. MacEachran ◽  
Joshua W. Hamilton ◽  
George A. O'Toole ◽  
Bruce A. Stanton

P-glycoprotein (Pgp), a member of the adenosine triphosphate-binding cassette (ABC) transporter superfamily, is a major drug efflux pump expressed in normal tissues, and is overexpressed in many human cancers. Overexpression of Pgp results in reduced intracellular drug concentration and cytotoxicity of chemotherapeutic drugs and is thought to contribute to multidrug resistance of cancer cells. The involvement of Pgp in clinical drug resistance has led to a search for molecules that block Pgp transporter activity to improve the efficacy and pharmacokinetics of therapeutic agents. We have recently identified and characterized a secreted toxin from Pseudomonas aeruginosa, designated cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif). Cif reduces the apical membrane abundance of CFTR, also an ABC transporter, and inhibits the CFTR-mediated chloride ion secretion by human airway and kidney epithelial cells. We report presently that Cif also inhibits the apical membrane abundance of Pgp in kidney, airway, and intestinal epithelial cells but has no effect on plasma membrane abundance of multidrug resistance protein 1 or 2. Cif increased the drug sensitivity to doxorubicin in kidney cells expressing Pgp by 10-fold and increased the cellular accumulation of daunorubicin by 2-fold. Thus our studies show that Cif increases the sensitivity of Pgp-overexpressing cells to doxorubicin, consistent with the hypothesis that Cif affects Pgp functional expression. These results suggest that Cif may be useful to develop a new class of specific inhibitors of Pgp aimed at increasing the sensitivity of tumors to chemotherapeutic drugs, and at improving the bioavailability of Pgp transport substrates.


2002 ◽  
Vol 49 (5) ◽  
pp. 391-397 ◽  
Author(s):  
Zhen-Li Liu ◽  
Kenji Onda ◽  
Sachiko Tanaka ◽  
Tsugutoshi Toma ◽  
Toshihiko Hirano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document