Anaerobic ammonium oxidation (anammox) in different natural ecosystems

2011 ◽  
Vol 39 (6) ◽  
pp. 1811-1816 ◽  
Author(s):  
Bao-lan Hu ◽  
Li-dong Shen ◽  
Xiang-yang Xu ◽  
Ping Zheng

Anammox (anaerobic ammonium oxidation), which is a reaction that oxidizes ammonium to dinitrogen gas using nitrite as the electron acceptor under anoxic conditions, was an important discovery in the nitrogen cycle. The reaction is mediated by a specialized group of planctomycete-like bacteria that were first discovered in man-made ecosystems. Subsequently, many studies have reported on the ubiquitous distribution of anammox bacteria in various natural habitats, including anoxic marine sediments and water columns, freshwater sediments and water columns, terrestrial ecosystems and some special ecosystems, such as petroleum reservoirs. Previous studies have estimated that the anammox process is responsible for 50% of the marine nitrogen loss. Recently, the anammox process was reported to account for 9–40% and 4–37% of the nitrogen loss in inland lakes and agricultural soils respectively. These findings indicate the great potential for the anammox process to occur in freshwater and terrestrial ecosystems. The distribution of different anammox bacteria and their contribution to nitrogen loss have been described in different natural habitats, demonstrating that the anammox process is strongly influenced by the local environmental conditions. The present mini-review summarizes the current knowledge of the ecological distribution of anammox bacteria, their contribution to nitrogen loss in various natural ecosystems and the effects of major influential factors on the anammox process.

2015 ◽  
Vol 57 (30) ◽  
pp. 13958-13978 ◽  
Author(s):  
Mumtazah Ibrahim ◽  
Norjan Yusof ◽  
Mohd Zulkhairi Mohd Yusoff ◽  
Mohd Ali Hassan

2005 ◽  
Vol 71 (2) ◽  
pp. 1066-1071 ◽  
Author(s):  
Didem Güven ◽  
Ana Dapena ◽  
Boran Kartal ◽  
Markus C. Schmid ◽  
Bart Maas ◽  
...  

ABSTRACT Anaerobic ammonium oxidation (anammox) is a recently discovered microbial pathway and a cost-effective way to remove ammonium from wastewater. Anammox bacteria have been described as obligate chemolithoautotrophs. However, many chemolithoautotrophs (i.e., nitrifiers) can use organic compounds as a supplementary carbon source. In this study, the effect of organic compounds on anammox bacteria was investigated. It was shown that alcohols inhibited anammox bacteria, while organic acids were converted by them. Methanol was the most potent inhibitor, leading to complete and irreversible loss of activity at concentrations as low as 0.5 mM. Of the organic acids acetate and propionate, propionate was consumed at a higher rate (0.8 nmol min−1 mg of protein−1) by Percoll-purified anammox cells. Glucose, formate, and alanine had no effect on the anammox process. It was shown that propionate was oxidized mainly to CO2, with nitrate and/or nitrite as the electron acceptor. The anammox bacteria carried out propionate oxidation simultaneously with anaerobic ammonium oxidation. In an anammox enrichment culture fed with propionate for 150 days, the relative amounts of anammox cells and denitrifiers did not change significantly over time, indicating that anammox bacteria could compete successfully with heterotrophic denitrifiers for propionate. In conclusion, this study shows that anammox bacteria have a more versatile metabolism than previously assumed.


2018 ◽  
Vol 79 (5) ◽  
pp. 975-984 ◽  
Author(s):  
Tatsuru Kamei ◽  
Rawintra Eamrat ◽  
Kenta Shinoda ◽  
Yasuhiro Tanaka ◽  
Futaba Kazama

Abstract Nitrate removal during anaerobic ammonium oxidation (anammox) treatment is a concern for optimization of the anammox process. This study demonstrated the applicability and long-term stability of the coupled anammox and hydrogenotrophic denitrification (CAHD) process as an alternative method for nitrate removal. Laboratory-scale fixed bed anammox reactors (FBR) supplied with H2 to support denitrification were operated under two types of synthetic water. The FBRs showed simultaneous NH4-N and NO3-N removal, indicating that the CAHD process can support NO3-N removal during the anammox process. Intermittent H2 supply (e.g. 5 mL/min for a 1-L reactor, 14/6-min on/off cycle) helped maintain the CAHD process without deteriorating its performance under long-term operation and resulted in a nitrogen removal rate of 0.21 kg-N/m3/d and ammonium, nitrate, and dissolved inorganic nitrogen removal efficiencies of 73.4%, 80.4%, and 77%, respectively. The microbial community structure related to the CAHD process was not influenced by changes in influent water quality, and included the anammox bacteria ‘Candidatus Jettenia’ and a Sulfuritalea hydrogenivorans-like species as the dominant bacteria even after long-term reactor operation, suggesting that these bacteria are key to the CAHD process. These results indicate that the CAHD process is a promising method for enhancing the efficiency of anammox process.


2006 ◽  
Vol 34 (1) ◽  
pp. 174-178 ◽  
Author(s):  
H.J.M. Op den Camp ◽  
B. Kartal ◽  
D. Guven ◽  
L.A.M.P. van Niftrik ◽  
S.C.M. Haaijer ◽  
...  

In the anaerobic ammonium oxidation (anammox) process, ammonia is oxidized with nitrite as primary electron acceptor under strictly anoxic conditions. The reaction is catalysed by a specialized group of planctomycete-like bacteria. These anammox bacteria use a complex reaction mechanism involving hydrazine as an intermediate. The reactions are assumed to be carried out in a unique prokaryotic organelle, the anammoxosome. This organelle is surrounded by ladderane lipids, which make the organelle nearly impermeable to hydrazine and protons. The localization of the major anammox protein, hydrazine oxidoreductase, was determined via immunogold labelling to be inside the anammoxosome. The anammox bacteria have been detected in many marine and freshwater ecosystems and were estimated to contribute up to 50% of oceanic nitrogen loss. Furthermore, the anammox process is currently implemented in water treatment for the low-cost removal of ammonia from high-strength waste streams. Recent findings suggested that the anammox bacteria may also use organic acids to convert nitrate and nitrite into dinitrogen gas when ammonia is in short supply.


2014 ◽  
Vol 81 (3) ◽  
pp. 938-947 ◽  
Author(s):  
Xiao-Ru Yang ◽  
Hu Li ◽  
San-An Nie ◽  
Jian-Qiang Su ◽  
Bo-Sen Weng ◽  
...  

ABSTRACTThe anaerobic oxidation of ammonium (anammox) process has been observed in diverse terrestrial ecosystems, while the contribution of anammox to N2production in paddy soils is not well documented. In this study, the anammox activity and the abundance and diversity of anammox bacteria were investigated to assess the anammox potential of 12 typical paddy soils collected in southern China. Anammox bacteria related to “CandidatusBrocadia” and “CandidatusKuenenia” and two novel unidentified clusters were detected, with “CandidatusBrocadia” comprising 50% of the anammox population. The prevalence of the anammox was confirmed by the quantitative PCR results based on hydrazine synthase (hzsB) genes, which showed that the abundance ranged from 1.16 × 104to 9.65 × 104copies per gram of dry weight. The anammox rates measured by the isotope-pairing technique ranged from 0.27 to 5.25 nmol N per gram of soil per hour in these paddy soils, which contributed 0.6 to 15% to soil N2production. It is estimated that a total loss of 2.50 × 106Mg N per year is linked to anammox in the paddy fields in southern China, which implied that ca. 10% of the applied ammonia fertilizers is lost via the anammox process. Anammox activity was significantly correlated with the abundance ofhzsBgenes, soil nitrate concentration, and C/N ratio. Additionally, ammonia concentration and pH were found to be significantly correlated with the anammox bacterial structure.


2009 ◽  
Vol 90 (2) ◽  
pp. 967-972 ◽  
Author(s):  
Pongsak (Lek) Noophan ◽  
Siriporn Sripiboon ◽  
Mongkol Damrongsri ◽  
Junko Munakata-Marr

2014 ◽  
Vol 48 (18) ◽  
pp. 10641-10647 ◽  
Author(s):  
Long-Jun Ding ◽  
Xin-Li An ◽  
Shun Li ◽  
Gan-Lin Zhang ◽  
Yong-Guan Zhu

2007 ◽  
Vol 2 (1) ◽  
Author(s):  
B. Szatkowska ◽  
E. Plaza ◽  
J. Trela ◽  
B. Hultman ◽  
J. Bosander

Nowadays, as the effluent water regulations become more stringent, there is a need to treat wastewater in the most efficient manner and according to sustainability principles. One of the possibilities to meet this challenge is treatment of side streams, which are usually returned to the main influent of Wastewater Treatment Plants (WWTP) increasing the total load. Following processes occurring in natural ecosystems a new biological technology - combination of partial nitritation and Anammox processes - for treatment of nitrogen-rich supernatant coming from digested sludge dewatering has been developed. The first stage of the process is an oxidation of half of the ammonium to nitrite (partial nitritation process). The following stage - Anammox process - is an anaerobic oxidation of ammonium and nitrite nitrogen to dinitrogen gas. The process has been successfully tested in a technical-scale pilot plant with a continuous supply of supernatant at Himmerfjärden WWTP. Kaldnes rings were provided for biofilm growth. Almost two-year experiences in operation of the two-stage process have been presented in this paper. The results showed that a proper adjustment of dissolved oxygen (DO) concentration in the bulk liquid and a pH value drop in the partial nitritation reactor is essential to obtain the ammonium-to-nitrite ratio (NAR) in the effluent close to 1.3 as required for the Anammox process. It took four months to recover the Anammox bacteria activity after NO2-N inhibition.


Sign in / Sign up

Export Citation Format

Share Document