scholarly journals Alpha-to-beta cell trans-differentiation for treatment of diabetes

Author(s):  
Mohamed Saleh ◽  
George K. Gittes ◽  
Krishna Prasadan

Diabetes mellitus is a significant cause of morbidity and mortality in the United States and worldwide. According to the CDC, in 2017, ∼34.2 million of the American population had diabetes. Also, in 2017, diabetes was the seventh leading cause of death and has become the number one biomedical financial burden in the United States. Insulin replacement therapy and medications that increase insulin secretion and improve insulin sensitivity are the main therapies used to treat diabetes. Unfortunately, there is currently no radical cure for the different types of diabetes. Loss of β cell mass is the end result that leads to both type 1 and type 2 diabetes. In the past decade, there has been an increased effort to develop therapeutic strategies to replace the lost β cell mass and restore insulin secretion. α cells have recently become an attractive target for replacing the lost β cell mass, which could eventually be a potential strategy to cure diabetes. This review highlights the advantages of using α cells as a source for generating new β cells, the various investigative approaches to convert α cells into insulin-producing cells, and the future prospects and problems of this promising diabetes therapeutic strategy.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brenda Strutt ◽  
Sandra Szlapinski ◽  
Thineesha Gnaneswaran ◽  
Sarah Donegan ◽  
Jessica Hill ◽  
...  

AbstractThe apelin receptor (Aplnr) and its ligands, Apelin and Apela, contribute to metabolic control. The insulin resistance associated with pregnancy is accommodated by an expansion of pancreatic β-cell mass (BCM) and increased insulin secretion, involving the proliferation of insulin-expressing, glucose transporter 2-low (Ins+Glut2LO) progenitor cells. We examined changes in the apelinergic system during normal mouse pregnancy and in pregnancies complicated by glucose intolerance with reduced BCM. Expression of Aplnr, Apelin and Apela was quantified in Ins+Glut2LO cells isolated from mouse pancreata and found to be significantly higher than in mature β-cells by DNA microarray and qPCR. Apelin was localized to most β-cells by immunohistochemistry although Aplnr was predominantly associated with Ins+Glut2LO cells. Aplnr-staining cells increased three- to four-fold during pregnancy being maximal at gestational days (GD) 9–12 but were significantly reduced in glucose intolerant mice. Apelin-13 increased β-cell proliferation in isolated mouse islets and INS1E cells, but not glucose-stimulated insulin secretion. Glucose intolerant pregnant mice had significantly elevated serum Apelin levels at GD 9 associated with an increased presence of placental IL-6. Placental expression of the apelinergic axis remained unaltered, however. Results show that the apelinergic system is highly expressed in pancreatic β-cell progenitors and may contribute to β-cell proliferation in pregnancy.


2011 ◽  
Vol 300 (5) ◽  
pp. E817-E823 ◽  
Author(s):  
Alice S. Green ◽  
Antoni R. Macko ◽  
Paul J. Rozance ◽  
Dustin T. Yates ◽  
Xiaochuan Chen ◽  
...  

GSIS is often measured in the sheep fetus by a square-wave hyperglycemic clamp, but maximal β-cell responsiveness and effects of fetal number and sex difference have not been fully evaluated. We determined the dose-response curve for GSIS in fetal sheep (0.9 of gestation) by increasing plasma glucose from euglycemia in a stepwise fashion. The glucose-insulin response was best fit by curvilinear third-order polynomial equations for singletons ( y = 0.018 x3 − 0.26 x2 + 1.2 x − 0.64) and twins ( y = −0.012 x3 + 0.043 x2 + 0.40 x − 0.16). In singles, maximal insulin secretion was achieved at 3.4 ± 0.2 mmol/l glucose but began to plateau after 2.4 ± 0.2 mmol/l glucose (90% of maximum), whereas the maximum for twins was reached at 4.8 ± 0.4 mmol/l glucose. In twin ( n = 18) and singleton ( n = 49) fetuses, GSIS was determined with a square-wave hyperglycemic clamp >2.4 mmol/l glucose. Twins had a lower basal glucose concentration, and plasma insulin concentrations were 59 ( P < 0.01) and 43% ( P < 0.05) lower in twins than singletons during the euglycemic and hyperglycemic periods, respectively. The basal glucose/insulin ratio was approximately doubled in twins vs. singles ( P < 0.001), indicating greater insulin sensitivity. In a separate cohort of fetuses, twins ( n = 8) had lower body weight ( P < 0.05) and β-cell mass ( P < 0.01) than singleton fetuses ( n = 7) as a result of smaller pancreata ( P < 0.01) and a positive correlation ( P < 0.05) between insulin immunopositive area and fetal weight ( P < 0.05). No effects of sex difference on GSIS or β-cell mass were observed. These findings indicate that insulin secretion is less responsive to physiological glucose concentrations in twins, due in part to less β-cell mass.


2006 ◽  
Vol 26 (12) ◽  
pp. 4553-4563 ◽  
Author(s):  
Seon-Yong Yeom ◽  
Geun Hyang Kim ◽  
Chan Hee Kim ◽  
Heun Don Jung ◽  
So-Yeon Kim ◽  
...  

ABSTRACT Activating signal cointegrator 2 (ASC-2) is a transcriptional coactivator of many nuclear receptors (NRs) and other transcription factors and contains two NR-interacting LXXLL motifs (NR boxes). In the pancreas, ASC-2 is expressed only in the endocrine cells of the islets of Langerhans, but not in the exocrine cells. Thus, we examined the potential role of ASC-2 in insulin secretion from pancreatic β-cells. Overexpressed ASC-2 increased glucose-elicited insulin secretion, whereas insulin secretion was decreased in islets from ASC-2+/− mice. DN1 and DN2 are two dominant-negative fragments of ASC-2 that contain NR boxes 1 and 2, respectively, and block the interactions of cognate NRs with the endogenous ASC-2. Primary rat islets ectopically expressing DN1 or DN2 exhibited decreased insulin secretion. Furthermore, relative to the wild type, ASC-2+/− mice showed reduced islet mass and number, which correlated with increased apoptosis and decreased proliferation of ASC-2+/− islets. These results suggest that ASC-2 regulates insulin secretion and β-cell survival and that the regulatory role of ASC-2 in insulin secretion appears to involve, at least in part, its interaction with NRs via its two NR boxes.


2015 ◽  
Vol 75 (1) ◽  
pp. 19-29 ◽  
Author(s):  
Romano Regazzi ◽  
Adriana Rodriguez-Trejo ◽  
Cécile Jacovetti

Insulin is a key hormone controlling metabolic homeostasis. Loss or dysfunction of pancreatic β-cells lead to the release of insufficient insulin to cover the organism needs, promoting diabetes development. Since dietary nutrients influence the activity of β-cells, their inadequate intake, absorption and/or utilisation can be detrimental. This review will highlight the physiological and pathological effects of nutrients on insulin secretion and discuss the underlying mechanisms. Glucose uptake and metabolism in β-cells trigger insulin secretion. This effect of glucose is potentiated by amino acids and fatty acids, as well as by entero-endocrine hormones and neuropeptides released by the digestive tract in response to nutrients. Glucose controls also basal and compensatory β-cell proliferation and, along with fatty acids, regulates insulin biosynthesis. If in the short-term nutrients promote β-cell activities, chronic exposure to nutrients can be detrimental to β-cells and causes reduced insulin transcription, increased basal secretion and impaired insulin release in response to stimulatory glucose concentrations, with a consequent increase in diabetes risk. Likewise, suboptimal early-life nutrition (e.g. parental high-fat or low-protein diet) causes altered β-cell mass and function in adulthood. The mechanisms mediating nutrient-induced β-cell dysfunction include transcriptional, post-transcriptional and translational modifications of genes involved in insulin biosynthesis and secretion, carbohydrate and lipid metabolism, cell differentiation, proliferation and survival. Altered expression of these genes is partly caused by changes in non-coding RNA transcripts induced by unbalanced nutrient uptake. A better understanding of the mechanisms leading to β-cell dysfunction will be critical to improve treatment and find a cure for diabetes.


2000 ◽  
Vol 279 (1) ◽  
pp. E68-E73 ◽  
Author(s):  
Ye Qi Liu ◽  
Peter W. Nevin ◽  
Jack L. Leahy

Islet β-cells are the regulatory element of the glucose homeostasis system. When functioning normally, they precisely counterbalance changes in insulin sensitivity or β-cell mass to preserve normoglycemia. This understanding seems counter to the dogma that β-cells are regulated by glycemia. We studied 60% pancreatectomy rats (Px) 4 wk postsurgery to elucidate the β-cell adaptive mechanisms. Nonfasting glycemia and insulinemia were identical in Px and sham-operated controls. There was partial regeneration of the excised β-cells in the Px rats, but it was limited in scope, with the pancreas β-cell mass reaching 55% of the shams (40% increase from the time of surgery). More consequential was a heightened glucose responsiveness of Px islets so that glucose utilization and insulin secretion per milligram of islet protein were both 80% augmented at normal levels of glycemia. Investigation of the biochemical basis showed a doubled glucokinase maximal velocity in Px islets, with no change in the glucokinase protein concentration after adjustment for the different β-cell mass in Px and sham islets. Hexokinase activity measured in islet extracts was also minimally increased, but the glucose 6-phosphate concentration and basal glucose usage of Px islets were not different from those in islets from sham-operated rats. The dominant β-cell adaptive response in the 60% Px rats was an increased catalytic activity of glucokinase. The remaining β-cells thus sense, and respond to, perceived hyperglycemia despite glycemia actually being normal. β-Cell mass and insulin secretion are both augmented so that whole pancreas insulin output, and consequently glycemia, are maintained at normal levels.


2015 ◽  
Vol 4 (6) ◽  
pp. 82 ◽  
Author(s):  
Julie M. Mhlaba ◽  
Emily W. Stockert ◽  
Martin Coronel ◽  
Alexander J. Langerman

Objective: Operating rooms (OR) generate a large portion of hospital revenue and waste. Consequently, improving efficiency and reducing waste is a high priority. Our objective was to quantify waste associated with opened but unused instruments from trays and to compare this with the cost of individually wrapping instruments.Methods: Data was collected from June to November of 2013 in a 550-bed hospital in the United States. We recorded the instrument usage of two commonly-used trays for ten cases each. The time to decontaminate and reassemble instrument trays and peel packs was measured, and the cost to reprocess one instrument was calculated.Results: Average utilization was 14% for the Plastic Soft Tissue Tray and 29% for the Major Laparotomy Tray. Of 98 instruments in the Plastics tray (n = 10), 0% was used in all cases observed and 59% were used in no observed cases. Of 110 instruments in the Major Tray (n = 10), 0% was used in all cases observed and 25% were used in no observed cases. Average cost to reprocess one instrument was $0.34-$0.47 in a tray and $0.81-$0.84 in a peel pack, or individually-wrapped instrument.Conclusions: We estimate that the cost of peel packing an instrument is roughly two times the cost of tray packing. Therefore, it becomes more cost effective from a processing standpoint to package an instrument in a peel pack when there is less than a 42%-56% probability of use depending on instrument type. This study demonstrates an opportunity for reorganization of instrument delivery that could result in a significant cost-savings and waste reduction.


2007 ◽  
Vol 292 (6) ◽  
pp. E1694-E1701 ◽  
Author(s):  
Jane J. Kim ◽  
Yoshiaki Kido ◽  
Philipp E. Scherer ◽  
Morris F. White ◽  
Domenico Accili

Type 2 diabetes results from impaired insulin action and β-cell dysfunction. There are at least two components to β-cell dysfunction: impaired insulin secretion and decreased β-cell mass. To analyze how these two variables contribute to the progressive deterioration of metabolic control seen in diabetes, we asked whether mice with impaired β-cell growth due to Irs2 ablation would be able to mount a compensatory response in the background of insulin resistance caused by Insr haploinsufficiency. As previously reported, ∼70% of mice with combined Insr and Irs2 mutations developed diabetes as a consequence of markedly decreased β-cell mass. In the initial phases of the disease, we observed a robust increase in circulating insulin levels, even as β-cell mass gradually declined, indicating that replication-defective β-cells compensate for insulin resistance by increasing insulin secretion. These data provide further evidence for a heterogeneous β-cell response to insulin resistance, in which compensation can be temporarily achieved by increasing function when mass is limited. The eventual failure of compensatory insulin secretion suggests that a comprehensive treatment of β-cell dysfunction in type 2 diabetes should positively affect both aspects of β-cell physiology.


Author(s):  
Brandon G. Santoni ◽  
Rohat Melik ◽  
Emre Unal ◽  
Nihan Kosku Perkgoz ◽  
Debra A. Kamstock ◽  
...  

Orthopaedic extremity injuries present a large medical and financial burden to the United States and world-wide communities [1]. Approximately six million long bone fractures are reported annually in the United States and approximately 10% of these fractures do not heal properly. Though the exact mechanism of impaired healing is poorly understood, many of these non-unions result when there is a communited condition that does not proceed through a stabilized healing pathway [2]. Currently, clinicians may monitor healing visually by radiographs, or via manual manipulation of the bone at the fracture [3]. Unfortunately, the course of aberrant fracture healing is not easily diagnosed in the early period when standard radiographic information of the fracture is not capable of discriminating the healing pathway. Manual assessment of fracture healing is also an inadequate diagnostic tool in the early stages of healing [4].


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262215
Author(s):  
Anna Tupetz ◽  
Loren K. Barcenas ◽  
Ashley J. Phillips ◽  
Joao Ricardo Nickenig Vissoci ◽  
Charles J. Gerardo

Introduction Antivenom is currently considered standard treatment across the full spectrum of severity for snake envenomation in the United States. Although safe and effective antivenoms exist, their use in clinical practice is not universal. Objective This study explored physicians’ perceptions of antivenom use and experience with snake envenomation treatment in order to identify factors that influence treatment decisions and willingness to administer. Methods We conducted a qualitative study including in-depth interviews via online video conferencing with physicians practicing in emergency departments across the United States. Participants were selected based on purposive sampling methods. Data analysis followed inductive strategies, conducted by two researchers. The codebook and findings were discussed within the research team. Findings Sixteen in-depth interviews with physicians from nine states across the US were conducted. The participants’ specialties include emergency medicine (EM), pediatric EM, and toxicology. The experience of treating snakebites ranged from only didactic education to having treated over 100 cases. Emergent themes for this manuscript from the interview data included perceptions of antivenom, willingness to administer antivenom and influencing factors to antivenom usage. Overall, cost-related concerns were a major barrier to antivenom administration, especially in cases where the indications and effectiveness did not clearly outweigh the potential financial burden on the patient in non-life- or limb-threatening cases. The potential to decrease recovery time and long-term functional impairments was not commonly reported by participants as an indication for antivenom. In addition, level of exposure and perceived competence, based on prior education and clinical experience, further impacted the decision to treat. Resources such as Poison Center Call lines were well received and commonly used to guide the treatment plan. The need for better clinical guidelines and updated treatment algorithms with clinical and measurable indicators was stated to help the decision-making process, especially among those with low exposure to snake envenomation patients. Conclusions A major barrier to physician use of antivenom is a concern about cost, cost transparency and cost–benefit for the patients. Those concerns, in addition to the varying degrees of awareness of potential long-term benefits, further influence inconsistent clinical treatment practices.


Sign in / Sign up

Export Citation Format

Share Document