instrument type
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 25)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Teresa Vogl ◽  
Martin Radenz ◽  
Heike Kalesse-Los

<p>Cloud radar Doppler spectra contain vertically highly resolved valuable information about the hydrometeors present in the cloud. A mixture of different hydrometeor types can lead to several peaks in the Doppler spectrum due to their different fall speeds, giving a hint about the size/ density/ number of the respective particles. Tools to separate and interpret peaks in cloud radar Doppler spectra have been developed in the past, but their application is often limited to certain radar settings, or the code not freely available to other users.</p> <p>We here present the effort of joining two methods, which have been developed and published (Radenz et al., 2019; Kalesse et al., 2019) with the aim to make them insensitive to instrument type and settings, and available on GitHub, and applicable to all cloud radars which are part of the ACTRIS CloudNet network.</p> <p>A supervised machine learning peak detection algorithm (PEAKO, Kalesse et al., 2019) is used to derive the optimal parameters to detect peaks in cloud radar Doppler spectra for each set of instrument settings. In the next step, these parameters are used by peakTree (Radenz et al., 2019), which is a tool for converting multi-peaked (cloud) radar Doppler spectra into a binary tree structure. PeakTree yields the (polarimetric) radar moments of each detected peak and can thus be used to classify the hydrometeor types. This allows us to analyze Doppler spectra of different cloud radars with respect to, e.g. the occurrence of supercooled liquid water or ice needles/columns with high linear depolarisation ratio (LDR).</p>


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Shiva Shojaeian ◽  
Niloofar Mortezapour ◽  
Fatemeh Soltaninejad ◽  
Nazanin Zargar ◽  
Babak Zandi ◽  
...  

Aims. A glide path is created prior to root canal instrumentation by nickel-titanium (NiTi) rotary files to increase the efficiency and safety of cleaning and shaping. This study aimed to assess root canal transportation in use of different glide path files in curved canals. Materials and Methods. 30 sound mesiobuccal root canals of mandibular molars with 20° to 40° curvature were selected and randomly assigned to 3 groups of EdgeGlidePath (EGP, EdgeEndo), One-G (Micro-Mega), and Neolix (Neoniti). The specimens were scanned before and after glide path creation by microcomputed tomography (micro-CT). The pre- and postoperative micro-CT scans were superimposed, and the degree of canal transportation and centering ratio were measured at 1, 3, 5, and 7 mm distances from the apical foramen. Statistical Analysis. The data were analyzed by two-way and one-way ANOVA. Results. The effects of distance from the apical foramen and instrument type and the interaction effect of the two were not significant on the centering ability of the files or canal transportation. Conclusion. EdgeGlidePath, One-G, and Neolix files fabricated from the conventional NiTi alloy or heat-treated M-Wire alloy showed similar performance regarding centering ability and canal transportation in glide path preparation in curved canals.


2021 ◽  
Author(s):  
Stefan Hagel

Starting from data on the ‘Paestum’ or ‘Poseidonia’ aulos established by Paul andBarbara Reichlin-Moser and Stelios Psaroudakēs, the ‘Pydna’ aulos, and comparable finds ofearly, mainly six-hole one-hole-shift, doublepipe fragments, possible musical interpretations ofthis important instrument type of the early Classical Period are considered. Probable pitchesand intervals are assessed by means of well-tested software and confirmed experimentally;the required double reeds of a much longer type than known from later periods are shownto be substantiated by iconographic and literary testimony. The harmonic analysis of theinstruments proposes the notion of a rudimentary tetrachordal structure, with equallydivided tetrachords, which is both plausible in terms of music-ethnological parallels and thedevelopment of ancient musical theory. Some of the studied instruments appear to adhereto an early pitch standard, seemingly coinciding with the typical cithara octave. Criticalevaluation of literary sources finally leads to a cautious interpretation as ‘Lydian’ instruments.


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Thalita Miranda Vieira ◽  
Ryhan Menezes Cardoso ◽  
Nayane Chagas Carvalho Alves ◽  
Silvio Emanuel Acioly Conrado de Menezes ◽  
Shirley Machado Batista ◽  
...  

The main aim is to evaluate the cyclic fatigue resistance of blue heat-treated instruments with different kinematics. Twenty-four endodontic instruments of the same brand were used for each of three experimental groups: VB (Vortex Blue 40/0.04), RB (RECIPROC Blue 40/0.06), and XB (X1 Blue 40/0.06). The instruments were randomly distributed and subjected to temperatures of 20°C and 37°C. The fatigue test was performed using a stainless steel device. Data were analysed using the Shapiro–Wilk test, Student’s t-test, the F test, and Tukey’s and Tamhane tests at significance level P = 0.05 . The instruments’ cyclic fatigue resistance at both temperatures differed significantly for each instrument type ( P < 0.001 ). The RB instruments displayed greater cyclic fatigue resistance at the tested temperatures compared with the VB and XB instruments ( P < 0.001 ). Reciprocating kinematics positively influenced cyclic fatigue resistance. Blue heat-treated instruments showed decreased cyclic fatigue resistance as the temperature increased ( P < 0.001 ).


2021 ◽  
Vol 13 (14) ◽  
pp. 7614
Author(s):  
Chaitanya Giri ◽  
Henderson James Cleaves ◽  
Markus Meringer ◽  
Kuhan Chandru

Mass spectrometry (MS) can become a potentially useful instrument type for aerosol, droplet and fomite (ADF) contagion surveillance in pandemic outbreaks, such as the ongoing SARS-CoV-2 pandemic. However, this will require development of detection protocols and purposing of instrumentation for in situ environmental contagion surveillance. These approaches include: (1) enhancing biomarker detection by pattern recognition and machine learning; (2) the need for investigating viral degradation induced by environmental factors; (3) representing viral molecular data with multidimensional data transforms, such as van Krevelen diagrams, that can be repurposed to detect viable viruses in environmental samples; and (4) absorbing engineering attributes for developing contagion surveillance MS from those used for astrobiology and chemical, biological, radiological, nuclear (CBRN) monitoring applications. Widespread deployment of such an MS-based contagion surveillance could help identify hot zones, create containment perimeters around them and assist in preventing the endemic-to-pandemic progression of contagious diseases.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3744
Author(s):  
Dario Di Nardo ◽  
Alessio Zanza ◽  
Marco Seracchiani ◽  
Orlando Donfrancesco ◽  
Gianluca Gambarini ◽  
...  

Previously published studies have investigated the influence of instrument access on cyclic fatigue resistance. However, no studies have evaluated the relationship between angulated access and torsional resistance. The aim of this study was to investigate the influence of the angle of access on the torsional resistance of endodontic instruments. One hundred and eighty instruments were selected: 90 F-One Blue 25/04 and 90 HeroShaper 25/04 instruments. Three subgroups (n = 30) for each instrument type (A and B) were established according to the angle of insertion of the instruments inside the artificial canal (0°, 10° and 20°). The tests were performed using a custom-made device consisting of the following: a motor that can record torque values of 0.1 s; interchangeable stainless-steel canals with different curvature (0°, 10° and 20°) that allow the instrument’s angulated insertion and keep it flexed during testing procedures; and a vise used to secure the instrument at 3 mm from the tip. Torque limit was set to 5.5 Ncm, and each instrument was rotated at 500 rpm until fracture occurred. Torque to fracture (TtF) was registered by the endodontic motor, and the fragment length (FL) was measured with a digital caliper. Fractographic analysis was performed using a scanning electron microscopy (SEM) evaluation to confirm the cause of failure. TtF values and fragment length (FL) values were statistically analyzed using one-way analysis of variance (ANOVA) test and the Bonferroni correction for multiple comparisons across the groups with significance set to a 95% confidence level. Regarding the F-One Blue instruments, the results showed a higher TtF for group A3 (20°) than for group A1 (0°) and group A2 (10°), with a statistically significant difference between group A3 and the other two groups (p < 0.05), whereas no statistically significant difference was found between group A1 and group A2 (p > 0.05). Regarding the HeroShaper instrument, the results showed the highest TtF for group B3, with a statistically significant difference between the three subgroups B1, B2 and B3 (p < 0.05). The results showed that the torsional resistance increases as the angle of instrument access increases with a varying intensity, according to the crystallographic phase of the instrument selected.


2021 ◽  
Vol 8 ◽  
Author(s):  
Rebecca Cowley ◽  
Rachel E. Killick ◽  
Tim Boyer ◽  
Viktor Gouretski ◽  
Franco Reseghetti ◽  
...  

Ocean temperature observations are crucial for a host of climate research and forecasting activities, such as climate monitoring, ocean reanalysis and state estimation, seasonal-to-decadal forecasts, and ocean forecasting. For all of these applications, it is crucial to understand the uncertainty attached to each of the observations, accounting for changes in instrument technology and observing practices over time. Here, we describe the rationale behind the uncertainty specification provided for all in situ ocean temperature observations in the International Quality-controlled Ocean Database (IQuOD) v0.1, a value-added data product served alongside the World Ocean Database (WOD). We collected information from manufacturer specifications and other publications, providing the end user with uncertainty estimates based mainly on instrument type, along with extant auxiliary information such as calibration and collection method. The provision of a consistent set of observation uncertainties will provide a more complete understanding of historical ocean observations used to examine the changing environment. Moving forward, IQuOD will continue to work with the ocean observation, data assimilation and ocean climate communities to further refine uncertainty quantification. We encourage submissions of metadata and information about historical practices to the IQuOD project and WOD.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251488
Author(s):  
Kaare Aagaard ◽  
Philippe Mongeon ◽  
Irene Ramos-Vielba ◽  
Duncan Andrew Thomas

Research funding is an important factor for public science. Funding may affect which research topics get addressed, and what research outputs are produced. However, funding has often been studied simplistically, using top-down or system-led perspectives. Such approaches often restrict analysis to confined national funding landscapes or single funding organizations and instruments in isolation. This overlooks interlinkages, broader funding researchers might access, and trends of growing funding complexity. This paper instead frames a ‘bottom-up’ approach that analytically distinguishes between increasing levels of aggregation of funding instrument co-use. Funding of research outputs is selected as one way to test this approach, with levels traced via funding acknowledgements (FAs) in papers published 2009–18 by researchers affiliated to Denmark, the Netherlands or Norway, in two test research fields (Food Science, Renewable Energy Research). Three funding aggregation levels are delineated: at the bottom, ‘funding configurations’ of funding instruments co-used by individual researchers (from single-authored papers with two or more FAs); a middle, ‘funding amalgamations’ level, of instruments co-used by collaborating researchers (from multi-authored papers with two or more FAs); and a ‘co-funding network’ of instruments co-used across all researchers active in a research field (all papers with two or more FAs). All three levels are found to include heterogenous funding co-use from inside and outside the test countries. There is also co-funding variety in terms of instrument ‘type’ (public, private, university or non-profit) and ‘origin’ (domestic, foreign or supranational). Limitations of the approach are noted, as well as its applicability for future analyses not using paper FAs to address finer details of research funding dynamics.


2021 ◽  
Author(s):  
Stephen Haddad ◽  
Rachel Killick ◽  
Matt Palmer ◽  
Mark Webb

&lt;p&gt;Historical ocean temperature measurements are important in studying climate change due to the high proportion of heat absorbed by the ocean. These measurements come from a variety of sources, including Expendable Bathythermographs (XBTs), which are an important source of such data. Their measurements need bias corrections which are dependent on the type of XBT used, but poor metadata collection practices mean the type is often missing, increasing the measurement uncertainty and thus the uncertainty of the downstream dataset.&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;This talk will describe efforts to fill in missing instrument type metadata using machine learning techniques so better bias corrections can be applied and the uncertainty in ocean temperature datasets reduced. I will describe the challenge arising from the nature of the dataset in applying standard ML techniques to the problem. I will also describe how we have used this project to explore the benefits of different platforms for ML and what open reproducible science looks like for Machine Learning projects.&lt;/p&gt;


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247136
Author(s):  
Niels Chr. Hansen ◽  
Lindsey Reymore

The study of musical expertise illustrates how intense training in a specialized domain may instigate development of implicit skills. While absolute pitch, or the ability to identify musical pitches without external reference, is rare even in professional musicians and is understood to have a genetic component, anecdotal evidence and pilot data suggest that some musicians without traditional absolute pitch are nonetheless better able to name notes played on their musical instrument of expertise than notes played on less familiar instruments. We have previously termed this particular gain in absolute pitch identification ability “instrument-specific absolute pitch” (ISAP) and have proposed that this skill is related to learned instrument type-specific timbral and intonational idiosyncrasies and articulatory motor planning activated by the timbre of the instrument. In this Registered Report Protocol, we describe two experiments designed to investigate ISAP in professional oboists. Experiment 1 tests for ISAP ability by comparing oboists’ pitch identification accuracies for notes played on the oboe and on the piano. A subset of the participants from Experiment 1 who demonstrate this ability will be recruited for Experiment 2; the purpose of Experiment 2 is to test hypotheses concerning a mechanistic explanation for ISAP. The outcome of these experiments may provide support for the theory that some individuals have ISAP and that the underlying mechanisms of this ability may rely on the perception of subtle timbral/intonational idiosyncrasies and on articulatory motor planning developed through intensive long-term training. In general, this work will contribute to the understanding of specialized expertise, specifically of implicit abilities and biases that are not addressed directly in training, but that may yet develop through practice of a related skill set.


Sign in / Sign up

Export Citation Format

Share Document