The Effect of Angiotensin upon the Vasculature of the Isolated Perfused Rat Kidney

1974 ◽  
Vol 46 (5) ◽  
pp. 647-650
Author(s):  
R. B. Cross ◽  
J. W. Trace ◽  
J. R. Vattuone

1. The effect of angiotensin II-amide upon the intrarenal distribution of perfusate was studied in the isolated rat kidney. 2. Low concentrations of angiotensin, 4·86 pmol/l (0·005 μg/l), reduced the flow rate through the papilla but did not alter total flow. 3. Higher concentrations of angiotensin, 0·486 nmol/l (0·5 μg/l), reduced total renal flow but did not decrease papillary perfusion. 4. In these experiments the perfusion pressure was maintained constant, indicating that the changes in flow were due to a direct effect of angiotensin upon the renal vasculature.

1984 ◽  
Vol 246 (4) ◽  
pp. F447-F456 ◽  
Author(s):  
M. J. Camargo ◽  
H. D. Kleinert ◽  
S. A. Atlas ◽  
J. E. Sealey ◽  
J. H. Laragh ◽  
...  

The effects of rat atrial tissue extract on renal hemodynamics and fluid and electrolyte excretion were investigated in the isolated perfused rat kidney (IK). IK were perfused at a constant effective perfusion pressure of about 90 mmHg. After control clearance periods (C), extracts of rat atria (AE) or ventricles (VE) were added to the perfusate and three 10-min experimental periods followed. AE, but not VE, significantly increased (P less than 0.001) renal vascular resistance (RVR) to 133 +/- 8% of C, GFR to 201 +/- 34%, filtration fraction to 245 +/- 41%, urine flow (V) to 675 +/- 131%, fractional excretion (FE) of H2O to 336 +/- 29%, absolute Na excretion (UNaV) to 1,259 +/- 290%, FENa to 642 +/- 129%, UKV to 2,226 +/- 1,237%, and FEK to 542 +/- 119%. Despite the marked natriuresis, since GFR doubled, Na reabsorption rose from 78.3 +/- 36.3 in C to 132 +/- 36.3 mueq/min after AE. The effects of AE were immediate and lasted to the end of the perfusion. The lower the initial control GFR, the larger was the AE-induced increase in GFR. Perfusion with low [Ca] (0.2 mM) or verapamil (10(-5) M) severely blunted the hemodynamic, diuretic, kaliuretic, and natriuretic effects of AE. AE decreased rather than increased the RVR when IK were perfused with vasoconstrictors such as angiotensin II, norepinephrine, or vasopressin. The results demonstrate that AE acts directly on the kidney, eliciting powerful Ca-dependent hemodynamic and natriuretic responses. The natriuresis induced by AE can be accounted for, at least in part, by its renal hemodynamic effects rather than by the presence of a putative tubular natriuretic factor. The hypothesis is advanced that AE contains a substance(s) which behaves as a functional agonist/antagonist of endogenous vasoconstrictors with a preferential site of action on the efferent arterioles of the renal vasculature.


1988 ◽  
Vol 255 (3) ◽  
pp. F391-F396 ◽  
Author(s):  
J. D. Firth ◽  
A. E. Raine ◽  
J. G. Ledingham

The effect of alteration in renal perfusion pressure on the response of the isolated perfused rat kidney to concentrations of alpha-human atrial natriuretic peptide (ANP) within the pathophysiological range has been examined. At a perfusion pressure of 90 mmHg ANP concentrations of 50, 200, and 1,000 pmol/l were without effect on any parameter tested. At a perfusion pressure of 130 mmHg 50 pmol/l ANP produced an increase of 3.13 +/- 0.68 mumol/min in sodium excretion (UNa V), compared with a fall of 0.33 +/- 1.04 mumol/min in controls (P less than 0.02); fractional excretion of sodium (FENa) rose by 1.45 +/- 0.36% vs. -0.12 +/- 0.47% (P less than 0.05); glomerular filtration rate (GFR) was unchanged. At 200 and 1,000 pmol/l larger changes in UNa V and FENa were seen; only at 1,000 pmol/l was a significant effect on GFR observed. In contrast, frusemide (furosemide) at concentrations of 10 and 100 mumol/l was natriuretic at both 90 and 130 mmHg, with lesser absolute but greater proportional changes being seen at the lower pressure. It was concluded 1) the response of the isolated kidney to ANP is critically dependent on perfusion pressure, 2) at elevated levels of perfusion pressure the isolated kidney can respond to levels of ANP within the upper physiological and pathophysiological range.


2015 ◽  
Vol 308 (10) ◽  
pp. F1178-F1187 ◽  
Author(s):  
Rocio Bautista-Pérez ◽  
Leonardo del Valle-Mondragón ◽  
Agustina Cano-Martínez ◽  
Oscar Pérez-Méndez ◽  
Bruno Escalante ◽  
...  

The possibility that angiotensin II (ANG II) exerts its effects through the activation of neutral sphingomyelinase (nSMase) has not been tested in kidneys. The results of the present study provide evidence for the activity and expression of nSMase in rat kidneys. In isolated perfused rat kidney, ANG II-induced renal vasoconstriction was inhibited by GW4869, an inhibitor of nSMase. We used nSMase for investigating the signal transduction downstream of ceramide. nSMase constricted the renal vasculature. An inhibitor of ceramidase (CDase), N-oleoylethanolamine (OEA), enhanced either ANG II- or nSMase-induced renal vasoconstriction. To demonstrate the interaction between the nSMase and cytosolic phospholipase A2 (cPLA2) signal transduction pathways, we evaluated the response to nSMase in the presence and absence of inhibitors of arachidonic acid (AA) metabolism: arachidonyl trifluoromethyl ketone (AACOCF3), an inhibitor of cPLA2; 5,8,11,14-eicosatetraynoic acid (ETYA), an inhibitor of all AA pathways; indomethacin, an inhibitor of cyclooxygenase (COX); furegrelate, a thromboxane A2 (TxA2)-synthase inhibitor; and SQ29548 , a TxA2-receptor antagonist. In these experiments, the nSMase-induced renal vasoconstriction decreased. ANG II or nSMase was associated with an increase in the release of thromboxane B2 (TxB2) in the renal perfusate of isolated perfused rat kidney. In addition, the coexpression of the ceramide with cPLA2, was found in the smooth muscle layer of intrarenal vessels. Our results suggest that ANG II stimulates ceramide formation via the activation of nSMase; thus ceramide may indirectly regulate vasoactive processes that modulate the activity of cPLA2 and the release of TxA2.


1997 ◽  
Vol 273 (2) ◽  
pp. F307-F314 ◽  
Author(s):  
R. Loutzenhiser ◽  
L. Chilton ◽  
G. Trottier

An adaptation of the in vitro perfused hydronephrotic rat kidney model allowing in situ measurement of arteriolar membrane potentials is described. At a renal perfusion pressure of 80 mmHg, resting membrane potentials of interlobular arteries (22 +/- 2 microns) and afferent (14 +/- 1 microns) and efferent arterioles (12 +/- 1 microns) were -40 +/- 2 (n = 8), -40 +/- 1 (n = 45), and -38 +/- 2 mV (n = 22), respectively (P = 0.75). Using a dual-pipette system to stabilize the impalement site, we measured afferent and efferent arteriolar membrane potentials during angiotensin II (ANG II)-induced vasoconstriction. ANG II (0.1 nM) reduced afferent arteriolar diameters from 13 +/- 1 to 8 +/- 1 microns (n = 8, P = 0.005) and membrane potentials from -40 +/- 2 to -29 +/- mV (P = 0.012). ANG II elicited a similar vasoconstriction in efferent arterioles, decreasing diameters from 13 +/- 1 to 8 +/- 1 microns (n = 8, P = 0.004), but failed to elicit a significant depolarization (-39 +/- 2 for control; -36 +/- 3 mV for ANG II; P = 0.27). Our findings thus indicate that resting membrane potentials of pre- and postglomerular arterioles are similar and lie near the threshold activation potential for L-type Ca channels. ANG II-induced vasoconstriction appears to be closely coupled to membrane depolarization in the afferent arteriole, whereas mechanical and electrical responses appear to be dissociated in the efferent arteriole.


1992 ◽  
Vol 83 (4) ◽  
pp. 477-482 ◽  
Author(s):  
N. Krivoy ◽  
H. Schlüter ◽  
M. Karas ◽  
W. Zidek

1. Human plasma was incubated with tissue kallikrein from porcine pancreas, dialysed to obtain a fraction with a molecular mass < 10 kDa and further purified by reverse-phase chromatography. 2. Vasopressor activity in the fractions obtained was tested in the isolated perfused rat kidney. 3. In one fraction a strong vasopressor action was found, which was blocked by saralasin and by an angiotensin II antibody. 4. Aprotinin inhibited the formation of vasopressor substances by tissue kallikrein. 5. U.v.-laser desorption/ionization mass spectrometry revealed a molecular mass of 1046 Da in the purified active fraction. 6. It is concluded that tissue kallikrein forms not only kinins, but also angiotensin II, from human plasma under physiological conditions.


1981 ◽  
Vol 240 (4) ◽  
pp. F306-F310
Author(s):  
M. H. Garvey ◽  
D. L. Maude

We measured titratable acid (TA) and NH4 excretion by isolated rat kidneys perfused either with conventional bicarbonate-containing solutions or with solutions in which bicarbonate was replaced by propionate. Rates of TA excretion by bicarbonate-perfused kidneys were similar to in vivo values, 0.27 +/- 0.04 mueq.ml GF-1 (0.21 mueq.min-1.g-1), and increased significantly under bicarbonate-free conditions to 0.70 +/- 0.12 mueq.ml GF-1 (0.42 mueq.min-1.g-1). At the same time the perfusate/urine pH difference (delta pH) increased significantly, from 0.63 +/- 0.06 to 0.92 +/- 0.06. Carbonic anhydrase inhibition by 5 X 10(-4) M acetazolamide alkalinized the urine of bicarbonate-perfused kidneys, while in the bicarbonate-free preparation the urine remained acid (delta pH = 0.27 +/- 0.04) and titratable acid continued to be excreted, though at a reduced rate, 0.19 +/- 0.04 mueq.ml GF-1. Under these same bicarbonate-free carbonic anhydrase-inhibited conditions, lowering the perfusate pH from 7.4 to 7.1 increased delta pH to 0.36 +/- 0.02 and caused total acid excretion (TA + NH4) to rise from 0.29 +/- 0.04 to 0.45 +/- 0.06 mueq.ml GF-1, and increasing the perfusate [HPO4] from 2.4 to 9.6 mM increased TA to 0.80 +/- 0.09 mueq.ml GF-1.


1978 ◽  
Vol 235 (1) ◽  
pp. E47
Author(s):  
W E Mitch ◽  
W Chan

Isolated rat kidney perfused without substrate released serine, glycine, and taurine, and substantially smaller amounts of other amino acids. When branched-chain keto acids were added, the corresponding amino acids were released at rates amounting to 15-25% of keto acid disappearance. Perfusion with 2 mM alpha-keto-isovalerate or alpha-keto-beta-methylvalerate caused an increased glucose release amounting to 18-23% of keto acid disappearance. The activity of branched-chain amino acid transferase (BATase) was significantly stimulated by perfusion with the analogue of leucine, but not by perfusion with alpha-ketoglutarate, the analogues of valine or isoleucine, or with leucine itself. These findings document that the kidney converts branched-chain keto acids in part to the corresponding amino acids and suggest that the keto analogue of leucine may be involved in the control of renal BATase activity, thereby indirectly regulating the metabolism of branched-chain amino acids.


1977 ◽  
Vol 232 (4) ◽  
pp. F377-F382 ◽  
Author(s):  
J. S. Fray

These experiments were designed to test whether changing perfusate calcium or magnesium concentrations affected renin release in the isolated perfused rat kidney, and whether kidneys removed from sodium-loaded or sodium-deprived rats released the same amount of renin in response to identical stimuli. Kidneys were perfused with Kreb-Henseleit solution containing albumin. Renin release was inversely related to perfusate calcium concentration, whereas renin release was directly related to perfusate magnesium. Although a low calcium medium or low perfusion pressure (50 mmHg) stimulated renin release, the release was substantially greater in the sodium-deprived rats. Increasing the perfusate sodium concentration from 85 to 206 mM increased excretion, but did not alter renin release. It is concluded that a) low perfusate calcium and high magnesium concentrations stimulate renin release, b) kidneys removed from sodium-deprived rats released substantially more renin thatn those from sodium-loaded rats, and c) changing perfusate sodium concentration alters sodium excretion, but does not affect renin release.


Sign in / Sign up

Export Citation Format

Share Document