The Ventilatory Effects of Doxapram in Normal Man

1983 ◽  
Vol 65 (1) ◽  
pp. 65-69 ◽  
Author(s):  
P. M. A. Calverley ◽  
R. H. Robson ◽  
P. K. Wraith ◽  
L. F. Prescott ◽  
D. C. Flenley

1. To determine the mode of action of doxapram in man we have measured ventilation, oxygen uptake, CO2 production, hypoxic and hypercapnic ventilatory responses in six healthy men before and during intravenous infusion to maintain a constant plasma level. 2. Doxapram changed neither resting oxygen uptake nor CO2 production but produced a substantial increase in resting ventilation at both levels of end-tidal CO2 studied. 3. Doxapram increased the ventilatory response to isocapnic hypoxia from − 0.8 ± 0.4 litre min−1 (%Sao2)−1 to −1.63 ± 0.9 litres min−1 (%Sao2)−1. This was similar to the increase in hypoxic sensitivity which resulted from raising the end-tidal CO2 by 0.5 kPa without adding doxapram. 4. The slope of the ventilatory response to rebreathing CO2 rose from 11.6 ± 5.3 litres min−1 kPa−1 to 20,4 ± 9.8 litres min−1 kPa−1 during doxapram infusion. 5. The marked increase in the ventilatory response to CO2 implies that doxapram has a central action, but the potentiation of the hypoxic drive also suggests that the drug acts on peripheral chemoreceptors, or upon their central connections, at therapeutic concentrations in normal unanaesthetized subjects.

1985 ◽  
Vol 68 (2) ◽  
pp. 215-225 ◽  
Author(s):  
A. J. Winning ◽  
R. D. Hamilton ◽  
S. A. Shea ◽  
C. Knott ◽  
A. Guz

1. The effect on ventilation of airway anaesthesia, produced by the inhalation of a 5% bupivacaine aerosol (aerodynamic mass median diameter = 4.77 μm), was studied in 12 normal subjects. 2. The dose and distribution of the aerosol were determined from lung scans after the addition to bupivacaine of 99mTc. Bupivacaine labelled in this way was deposited primarily in the central airways. The effectiveness and duration of airway anaesthesia were assessed by the absence of the cough reflex to the inhalation of three breaths of a 5% citric acid aerosol. Airway anaesthesia always lasted more than 20 min. 3. Resting ventilation was measured, by respiratory inductance plethysmography, before and after inhalation of saline and bupivacaine aerosols. The ventilatory response to maximal incremental exercise and, separately, to CO2 inhalation was studied after the inhalation of saline and bupivacaine aerosols. Breathlessness was quantified by using a visual analogue scale (VAS) during a study and by questioning on its completion. 4. At rest, airway anaesthesia had no effect on mean tidal volume (VT), inspiratory time (Ti), expiratory time (Te) or end-tidal Pco2, although the variability of tidal volume was increased. On exercise, slower deeper breathing was produced and breathlessness was reduced. The ventilatory response to CO2 was increased. 5. The results suggest that stretch receptors in the airways modulate the pattern of breathing in normal man when ventilation is stimulated by exercise; their activation may also be involved in the genesis of the associated breathlessness. 6. A hypothesis in terms of a differential airway/alveolar receptor block, is proposed to explain the exaggerated ventilatory response to CO2.


1999 ◽  
Vol 90 (5) ◽  
pp. 1288-1293 ◽  
Author(s):  
Elise Sarton ◽  
Minke van der Wal ◽  
Diederik Nieuwenhuijs ◽  
Luc Teppema ◽  
James L. Robotham ◽  
...  

Background Although the mu-opioid agonist morphine affects ventilatory control in men and women in different ways, no data exist regarding the influence of sex on the ventilatory effects of inhalational anesthetics. The authors compared the effect of sevoflurane on the ventilatory response to isocapnic hypoxia in healthy young men and women. Methods Breath-to-breath ventilatory responses to hypoxic steps (number of hypoxic steps, four-six; duration, 3 min; end-tidal oxygen tension, approximately 50 mmHg; end-tidal carbon dioxide tension clamped at approximately 4 mmHg above resting values) were assessed in nine men and nine women without and with low-dose sevoflurane (end-tidal concentration, 0.25%). The bispectral index of the electroencephalogram was measured concomitantly. Results Sevoflurane reduced the hypoxic ventilatory sensitivity significantly in both sexes (men: control, 0.62 +/- 0.17 vs. sevoflurane, 0.38 +/- 0.19 l x min(-1) x %(-1); women: control, 0.52 +/- 0.30 vs. sevoflurane, 0.34 +/- 0.15 l x min(-1) x %(-1)). Sevoflurane-induced reductions of the hypoxic responses were not different in the men and women. During sevoflurane inhalation, the bispectral index values decreased equally in men and women. Conclusion In contrast to morphine, the influence of a low dose of the inhalational anesthetic sevoflurane on the ventilatory response to hypoxia is independent of sex.


1987 ◽  
Vol 73 (6) ◽  
pp. 617-625 ◽  
Author(s):  
K. Murphy ◽  
R. P. Stidwill ◽  
Brenda A. Cross ◽  
Kathryn D. Leaver ◽  
E. Anastassiades ◽  
...  

1. Continuous recordings of arterial pH, ventilation, airway CO2 and heart rate were made during rest and during 3–4 min periods of rhythmic leg exercise in four renal patients with arteriovenous shunts. 2. The patients were anaemic (haemoglobin 6.5–9.0 g/dl) but had a normal ventilatory response to exercise as judged by the ratio of the change in ventilation to the change in CO2 production. 3. Breath-by-breath oscillations in arterial pH disappeared for the majority of the exercise period in each patient. 4. Changes in mean arterial pH and end-tidal CO2 tension with exercise were inconsistent between subjects but consistent within a given subject. On average, mean arterial pH rose by 0.011 pH unit. Changes in end-tidal CO2 tension reflected changes in mean pHa by falling on average by 1 mmHg (0.13 kPa). 5. Hypercapnia and acidaemia were not found to be necessary for the ventilatory response to moderate exercise.


1986 ◽  
Vol 60 (3) ◽  
pp. 997-1002 ◽  
Author(s):  
D. L. Maxwell ◽  
P. Chahal ◽  
K. B. Nolop ◽  
J. M. Hughes

The effects of a 90-min infusion of somatostatin (1 mg/h) on ventilation and the ventilatory responses to hypoxia and hypercapnia were studied in six normal adult males. Minute ventilation (VE) was measured with inductance plethysmography, arterial 02 saturation (SaO2) was measured with ear oximetry, and arterial PCO2 (Paco2) was estimated with a transcutaneous CO2 electrode. The steady-state ventilatory response to hypoxia (delta VE/delta SaO2) was measured in subjects breathing 10.5% O2 in an open circuit while isocapnia was maintained by the addition of CO2. The hypercapnic response (delta VE/delta PaCO2) was measured in subjects breathing first 5% and then 7.5% CO2 (in 52–55% O2). Somatostatin greatly attenuated the hypoxic response (control mean -790 ml x min-1.%SaO2 -1, somatostatin mean -120 ml x min-1.%SaO2 -1; P less than 0.01), caused a small fall in resting ventilation (mean % fall - 11%), but did not affect the hypercapnic response. In three of the subjects progressive ventilatory responses (using rebreathing techniques, dry gas meter, and end-tidal Pco2 analysis) and overall metabolism were measured. Somatostatin caused similar changes (mean fall in hypoxic response -73%; no change in hypercapnic response) and did not alter overall O2 consumption nor CO2 production. These results show an hitherto-unsuspected inhibitory potential of this neuropeptide on the control of breathing; the sparing of the hypercapnic response is suggestive of an action on the carotid body but does not exclude a central effect.


1972 ◽  
Vol 43 (1) ◽  
pp. 47-54 ◽  
Author(s):  
H. W. Iff ◽  
D. C. Flenley

1. We have determined the ventilatory response to CO2 inhaled in 30% oxygen (balance nitrogen) in eight normal subjects (1) before and during 4 days of 80 mg of oral frusemide daily and (2) within 55–75 min of 80 mg of frusemide orally. 2. Over 4 days the drug decreased serum potassium concentrations, but increased end tidal (and arterial) Pco2 and serum bicarbonate, thus inducing a mild metabolic alkalosis with an appropriate but small shift in CO2 response to the right without a significant change in the slope of the response. The CO2 response was unaltered by oral frusemide 55–75 min earlier. 3. This slight rise in Pco2 during 4 days of frusemide therapy contrasts with the absence of rise in Pco2 after treatment with thiazide diuretics, as reported by others. 4. We discuss possible implications of these results for the selection of an appropriate diuretic in patients with CO2 retention at various phases of their illness.


1985 ◽  
Vol 59 (1) ◽  
pp. 170-179 ◽  
Author(s):  
J. DeGoede ◽  
A. Berkenbosch ◽  
D. S. Ward ◽  
J. W. Bellville ◽  
C. N. Olievier

This study investigates the correspondence between results of the ventilatory response to CO2 obtained using the technique of dynamic end-tidal CO2 forcing (DEF) and results obtained using the technique of artificial brain stem perfusion (ABP). The DEF technique separates the dynamic ventilatory response into a slow and fast component with gains g1 and g2 as well as the extrapolated CO2 tension at zero ventilation (Bk). The ABP technique results in steady-state central (Sc) and peripheral (Sp) chemoreflex gains and extrapolated CO2 tension at zero ventilation (B). Experiments were performed on 14 alpha-chloralose-urethan anesthetized cats. A wide range of relative peripheral chemosensitivities was obtained by subjecting eight cats to normoxic and three cats to hypoxic CO2 challenges and three cats to both conditions. Statistical analysis of the experimental data showed that the vectors (g1, g2, Bk) and (Sc, Sp, B) for each cat did not differ significantly (P = 0.56). This was also the case for the vectors [g2/(g1 + g2), Bk] and [Sp/(Sc + Sp), B] (P = 0.21). We conclude that in the DEF experiments the slow ventilatory response to isoxic changes in end-tidal CO2 can be equated with the central chemoreflex loop and the faster ventilatory response to the peripheral chemoreflex loop. The agreement between the two techniques is good.


1993 ◽  
Vol 75 (5) ◽  
pp. 2209-2216 ◽  
Author(s):  
M. J. Poulin ◽  
D. A. Cunningham ◽  
D. H. Paterson ◽  
J. M. Kowalchuk ◽  
W. D. Smith

Findings from studies of the effects of aging on the human respiratory controller are equivocal. This study assessed the ventilatory response to CO2 in hyperoxia and hypoxia in groups of younger (YS) and older (OS) humans. Two protocols were used. In the first, end-tidal PCO2 (PETCO2) was clamped at 1–2 Torr above rest (eucapnia), and, in the second, PETCO2 was clamped at 7–8 torr above resting PETCO2 (moderate hypercapnia). End-tidal PO2 was clamped at 100 Torr throughout except for two 2-min periods at 500 and 50 Torr. The ventilatory responses for each subject at each PO2 were fitted to the linear equation, VE = S(PETCO2 - B), where VE is minute ventilation, S is the response curve slope, and B is the response curve threshold. In eucapnia, there were no differences in hypoxic and hyperoxic VE between YS and OS. In hypercapnia, hypoxic VE was 24% lower in OS [39.93 +/- 2.71 (SE) l/min] than in YS (52.16 +/- 3.17 l/min). In hypoxia, S was significantly lower in OS (3.25 +/- 0.38 l.min-1.Torr-1) than in YS (4.76 +/- 0.37 l.min-1.Torr-1). We conclude that, in older humans, VE is lower in hypoxia during moderate hypercapnia, resulting mainly from a decreased peripheral chemoreflex CO2 sensitivity.


1992 ◽  
Vol 72 (3) ◽  
pp. 1004-1009 ◽  
Author(s):  
K. Gleeson ◽  
C. W. Zwillich

Intravenously administered adenosine may increase ventilation (VI) and the ventilatory response to CO2 (HCVR). Inasmuch as we have previously hypothesized that those with higher HCVR may be more prone to periodic breathing during sleep, we measured VI and HCVR and monitored ventilatory pattern in seven healthy subjects before and during an infusion of adenosine (80 micrograms.kg-1.min-1) during uninterrupted sleep. Adenosine increased the mean sleeping VI (7.6 +/- 0.4 vs. 6.5 +/- 0.4 l/min, P less than 0.05) and decreased mean end-tidal CO2 values (42.4 +/- 1.2 vs. 43.7 +/- 1.0 Torr, P = 0.06, paired t test) during stable breathing. In six of seven subjects, periodic breathing occurred during this infusion. The amplitude (maximum VI--mean VI) and period length of this periodic breathing was variable among subjects and not predicted by baseline HCVR [correlation coefficients (r) = 0.64, P = 0.17 and r = -0.1, P = 0.9, respectively]. Attempts to measure HCVR during adenosine infusion were unsuccessful because of frequent arousals and continued periodic breathing despite hyperoxic hypercapnia. We conclude that adenosine infusion increases VI and produces periodic breathing during sleep in most normal subjects studied.


1983 ◽  
Vol 54 (4) ◽  
pp. 874-879 ◽  
Author(s):  
D. P. White ◽  
N. J. Douglas ◽  
C. K. Pickett ◽  
J. V. Weil ◽  
C. W. Zwillich

Previous investigation has demonstrated that progesterone, a hormone found in premenopausal women, is a ventilatory stimulant. However, fragmentary data suggest that normal women may have lower ventilatory responses to chemical stimuli than men, in whom progesterone is found at low levels. As male-female differences have not been carefully studied, we undertook a systematic comparison of resting ventilation and ventilatory responses to chemical stimuli in men and women. Resting ventilation was found to correlate closely with CO2 production in all subjects (r = 0.71, P less than 0.001), but women tended to have a greater minute ventilation per milliliter of CO2 produced (P less than 0.05) and consequently a lower CO2 partial pressure (PCO2) (men 35.1 +/- 0.5 Torr, women 33.2 +/- 0.5 Torr; P less than 0.02). Women were also found to have lower tidal volumes, even when corrected from body surface area (BSA), and greater respiratory frequency than comparable males. The hypoxic ventilatory response (HVR) quantitated by the shape parameter A was significantly greater in men [167 +/- 22 (SE)] than in women (109 +/- 13; P less than 0.05). In men this hypoxic response was found to correlate closely with O2 consumption (r = 0.75, P less than 0.001) but with no measure of size or metabolic rate in women. The hypercapnic ventilatory response, expressed as the slope of ventilation vs. PCO2, was also greater in men (2.30 +/- 0.23) than in women (1.58 +/- 0.19, P less than 0.05). Finally women tended to have higher ventilatory responses in the luteal than in the follicular menstrual phase, but this was significant only for HVR (P less than 0.05). Women, with relatively higher resting ventilation, have lower responses to hypoxia and hypercapnia.


2004 ◽  
Vol 97 (5) ◽  
pp. 1673-1680 ◽  
Author(s):  
Chris Morelli ◽  
M. Safwan Badr ◽  
Jason H. Mateika

We hypothesized that the acute ventilatory response to carbon dioxide in the presence of low and high levels of oxygen would increase to a greater extent in men compared with women after exposure to episodic hypoxia. Eleven healthy men and women of similar race, age, and body mass index completed a series of rebreathing trials before and after exposure to eight 4-min episodes of hypoxia. During the rebreathing trials, subjects initially hyperventilated to reduce the end-tidal partial pressure of carbon dioxide (PetCO2) below 25 Torr. Subjects then rebreathed from a bag containing a normocapnic (42 Torr), low (50 Torr), or high oxygen gas mixture (150 Torr). During the trials, PetCO2 increased while the selected level of oxygen was maintained. The point at which minute ventilation began to rise in a linear fashion as PetCO2 increased was considered to be the carbon dioxide set point. The ventilatory response below and above this point was determined. The results showed that the ventilatory response to carbon dioxide above the set point was increased in men compared with women before exposure to episodic hypoxia, independent of the oxygen level that was maintained during the rebreathing trials (50 Torr: men, 5.19 ± 0.82 vs. women, 4.70 ± 0.77 l·min−1·Torr−1; 150 Torr: men, 4.33 ± 1.15 vs. women, 3.21 ± 0.58 l·min−1·Torr−1). Moreover, relative to baseline measures, the ventilatory response to carbon dioxide in the presence of low and high oxygen levels increased to a greater extent in men compared with women after exposure to episodic hypoxia (50 Torr: men, 9.52 ± 1.40 vs. women, 5.97 ± 0.71 l·min−1·Torr−1; 150 Torr: men, 5.73 ± 0.81 vs. women, 3.83 ± 0.56 l·min−1·Torr−1). Thus we conclude that enhancement of the acute ventilatory response to carbon dioxide after episodic hypoxia is sex dependent.


Sign in / Sign up

Export Citation Format

Share Document