Contribution of Vasopressin to the maintenance of blood pressure in deoxycorticosterone-salt induced malignant hypertension in spontaneously hypertensive rats

1986 ◽  
Vol 70 (2) ◽  
pp. 191-198 ◽  
Author(s):  
Masao Hiwatari ◽  
Josephine M. Abrahams ◽  
Takao Saito ◽  
Colin I. Johnston

1. In the present study, deoxycorticosterone (DOC) and salt was administered to Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR) by using silicone-rubber implants (DOC acetate, 100 mg/kg) and 0.9% NaCl as drinking water. SHR treated with DOC-salt for 4 weeks showed the characteristics of malignant hypertension including marked increases in blood pressure and left ventricular weight with typical histological changes in the kidney. 2. DOC-salt treatment increased plasma vasopressin levels in WKY (from 6.1 ± 0.5 to 8.9 ± 0.8 pmol/l) but significantly more in SHR (from 5.0 ± 0.6 to 15.8 ±1.2 pmol/l). 3. Intravenous administration of the specific antagonist to the pressor effect of vasopressin, d(CH2)5Tyr(Me)AVP (10μg/kg), decreased mean arterial pressure of DOC-salt treated WKY and SHR by 6.6 ± 0.9mmHg (P < 0.05) and 9.7 ± 1.7 mmHg (P < 0.05) respectively. 4. DOC-water treatment also increased plasma AVP levels in SHR to 10.5 ± 0.8 pmol/l, but the vasopressin antagonist had little effect on blood pressure in these rats. 5. Plasma levels of vasopressin were significantly correlated with both mean arterial pressure (r = 0.64) and left ventricular weight (r = 0.74). This suggests a close relationship between plasma AVP and severity of hypertension. 6. The results of the present experiment demonstrate that vasopressin is part of the overall pressor mechanism which contributes to the maintenance of blood pressure in DOC-salt induced malignant hypertension in SHR, but the small fall in pressure produced by the AVP antagonists suggests that the contribution is of only minor importance.


1995 ◽  
Vol 89 (2) ◽  
pp. 177-182 ◽  
Author(s):  
Naoyoshi Minami ◽  
Yutaka Imai ◽  
Jun-Ichiro Hashimoto ◽  
Keishi Abe

1. The aim of this study was to clarify the extent to which vascular nitric oxide contributes to basal blood pressure in conscious spontaneously hypertensive rats and normotensive Wistar Kyoto rats. 2. The contribution of vascular nitric oxide to maintenance of blood pressure was estimated by measuring the pressor response to an intravenous injection of nitric oxide synthase inhibitor, Nω-l-arginine methyl ester, given after serial injections of captopril, vasopressin V1-receptor antagonist (V1-antagonist) and ganglion blocker (pentolinium) in conscious spontaneously hypertensive and Wistar Kyoto rats aged 20–28 weeks. To estimate the ‘amplifier property’ of hypertrophied vasculature in spontaneously hypertensive rats, which is known to modulate pressor responses, the lower blood pressure plateau after serial injections of captopril, V1-antagonist and pentolinium and the maximum blood pressure elicited by subsequent injection of increasing doses of phenylephrine were also measured. 3. The serial injections of captopril, V1-antagonist and pentolinium decreased mean arterial pressure from 164 ± 9 mmHg to 67 ± 2 mmHg and from 117 ± 2 mmHg to 49 ± 1 mmHg in spontaneously hypertensive and Wistar Kyoto rats respectively. The subsequent injection of Nω-l-arginine methyl ester restored mean arterial pressure almost to its control levels in both spontaneously hypertensive and Wistar Kyoto rats. The absolute changes in mean arterial pressure elicited by Nω-l-arginine methyl ester were significantly greater in spontaneously hypertensive than in Wistar Kyoto rats (P < 0.01), but there was no significant difference in the responses to Nω-l-arginine methyl ester when they were expressed as percentages of either the lower blood pressure plateau or maximum blood pressure. 4. These results indicate that basal blood pressure in both spontaneous hypertensive and Wistar Kyoto rats is maintained by a balance between vascular nitric oxide and major pressor systems. They also suggest that the vasodilatory effect of vascular nitric oxide does not differ between spontaneously hypertensive and Wistar Kyoto rats, and that the increased pressor effect of Nω-l-arginine methyl ester in spontaneously hypertensive rats is due to a vascular amplifier mechanism.



2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Tomomi Nagayama ◽  
Yoshitaka Hirooka ◽  
Akiko Chishaki ◽  
Masao Takemoto ◽  
Yasushi Mukai ◽  
...  

Objective.Many previous clinical studies have suggested that atrial fibrillation (AF) is closely associated with hypertension. However, the benefits of antihypertensive therapy on AF are still inconsistent, and it is necessary to explore the factors augmenting AF in hypertensive rats. The aim of the present study was to investigate the correlation between arterial pressure or voltage stimulus and to the duration of electrically induced AF in normotensive or hypertensive rats.Methods.AF was reproducibly induced by transesophageal atrial burst pacing in spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY). We did the burst pacing at high (20 V) or low (5 V) voltage.Results.Duration of AF did not correlate with systolic blood pressure (SBP) and stimulus voltage in WKY. However, only in SHR, duration of AF with high stimulus voltage significantly correlated with SBP and was significantly longer in high than in low voltage stimulus.Discussion and Conclusion.Duration of AF is augmented by high voltage stimulus with higher blood pressure in SHR.



1985 ◽  
Vol 248 (1) ◽  
pp. H8-H14
Author(s):  
R. P. Crisman ◽  
R. J. Tomanek

We tested the hypothesis that exercise training provides a stimulus that could modify the decrement in mitochondria-to-myofibril volume ratio characteristic of myocardial cells hypertrophied in response to a pressure overload. Spontaneously hypertensive rats (SHR) were trained 5 days/wk on a treadmill at 70-90% maximal VO2 between the ages of 6 and 16 wk corresponding to the development of hypertension and cardiac hypertrophy. The training program increased maximal VO2 and effected a resting bradycardia but did not alter blood pressure, left ventricular hypertrophy, or peak cardiac output. Our stereological data from electron micrographs shows that the decrement in mitochondrial volume density and the increase in myofibril volume density characteristic of SHR compared with their normotensive controls (WKY, Wistar-Kyoto rats) were reversed. Thus the relative volumes of mitochondria and myofibrils and their ratio in trained SHR were similar to those of the WKY group. The similarity was noted in myocytes from both the subepicardium and subendocardium. These data suggest that exercise training facilitates a proportional growth of energy-producing and energy-consuming organelles in SHR and that this effect is not secondary to modification of blood pressure or left ventricular mass.



1985 ◽  
Vol 249 (1) ◽  
pp. H193-H197 ◽  
Author(s):  
E. K. Chiu ◽  
J. R. McNeill

In spontaneously hypertensive rats (SHR) and their normotensive Wistar-Kyoto controls (WKY), prolonged intravenous infusions of either arginine vasopressin (AVP, 8 mU X kg-1 X min-1) or phenylephrine (PE, 20 nmol X kg-1 X min-1) resulted in similar rises in arterial pressure. Heart rate fell greatly in the WKY but not in the SHR. Withdrawal of the PE infusion resulted in moderate decreases in blood pressure and increases in heart rate; these responses were similar in SHR and WKY. At 5 h after PE withdrawal, blood pressure and heart rate returned to basal values. In contrast, withdrawal of the AVP infusion was associated with greater falls in blood pressure and rises in heart rate. Blood pressure and heart rate in both the SHR and the WKY at 5 h after AVP were significantly different from their respective basal values. The effects of AVP withdrawal on either blood pressure or heart rate were significantly greater in the SHR than in the WKY. At 5 h after the withdrawal of AVP, blood pressure in the SHR was reduced to normotensive levels. These results suggest that the withdrawal effect was specific to AVP, was more marked in the SHR, and might not result from only the rise in blood pressure seen during the intravenous infusion of the pressor agent.



2003 ◽  
Vol 81 (11) ◽  
pp. 1036-1041 ◽  
Author(s):  
Sanya Roysommuti ◽  
Mahmood S Mozaffari ◽  
J Michael Wyss

Insulin excess exacerbates hypertension in spontaneously hypertensive rats (SHR). This study examined the relative contribution of the renin–angiotensin system and the sympathetic nervous system in this phenomenon. In SHR, daily subcutaneous injections of insulin were initiated either before short-term angiotensin-converting enzyme inhibition with captopril or after lifetime captopril treatment. Insulin treatment resulted in significant increases in mean arterial pressure and heart rate and captopril treatment lowered arterial pressure, but captopril did not lower arterial pressure more in the insulin-treated compared with control rats. To test the contribution of the sympathetic nervous system to this form of hypertension, each rat was intravenously infused with either a ganglionic blocker (i.e., hexamethonium) or a centrally acting α2-adrenergic receptor agonist (i.e., clonidine). Administration of either agent largely eliminated the differences in mean arterial pressure and heart rate between the insulin-treated and saline-treated SHR, irrespective of captopril treatment. These data indicate that in SHR, the ability of insulin to increase blood pressure is closely related to sympathoexcitation, which is unresponsive to blockade of angiotensin-converting enzyme.Key words: blood pressure, insulin, captorpil, hexamethonium, clonidine, rat.



Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Ahmed A Elmarakby ◽  
Chelsey Pye ◽  
Krystal Brinson ◽  
Tatsuo Yamamoto ◽  
Jennifer C Sullivan

We recently demonstrated that female spontaneously hypertensive rats (SHR) have higher nitric oxide (NO) bioavailability in the kidney compared to males. Therefore, we hypothesize that female SHR are more dependent on the NO synthase (NOS) system to modulate their blood pressure, and as a result will have a greater rise in blood presure and renal injury in response to chronic NOS inhibition compared to males. Mean arterial pressure in SHR was very sensitive to NOS inhibition, with both sexes exhibiting a significant increase in blood pressure to the non-specific NOS inhibitor N G -nitro-L-arginine methyl ester (L-NAME) at a dose of 2 mg/kg/day. However, there was not a sex difference in the percent increase in mean arterial pressure. Treatment of female and male SHR with 7 mg/kg/day L-NAME for 2 weeks significantly increased mean arterial pressure and indices of renal injury in both females and males; the percent increases in mean arterial pressure and injury were greater in females during the last three days of L-NAME treatment (% increase in mean arterial pressure was 44± 1.3 in females vs. 35± 2.9 in males, P<0.05). L-NAME treatment also increased indices of inflammation and oxidative stress as urinary monocyte chemoattractant protein-1 (MCP-1) and thiobarbituric acid reactive substances (TBARs) excretion levels were increased by L-NAME; however, the increases were greater in females. Renal cortical macrophage and T cell infiltrations and soluble intracellular adhesion molecule-1 (sICAM-1) were also elevated following L-NAME treatment (cortical sICAM-1 levels increased from 4.7± 0.2 to 9± 0.1 ng/mg in males vs. 4.6± 0.1 to 7.9± 0.3 ng/mg in females, P<0.05). Although renal cortical macrophage infiltration was greater in female SHR vs. males following L-NAME treatment, the increase in cortical T cell infiltration and sICAM-1 were greater in males. These data suggest that the NO system plays an important role in modulating blood pressure, renal injury and inflammation in SHR, with females being more dependent on the NOS system than males.



1991 ◽  
Vol 81 (1) ◽  
pp. 107-112 ◽  
Author(s):  
K. Fujito ◽  
M. Yokomatsu ◽  
N. Ishiguro ◽  
H. Numahata ◽  
Y. Tomino ◽  
...  

1. The purpose of this study was to determine the effect of dietary Ca2+ intake on blood pressure and erythrocyte Na+ transport in spontaneously hypertensive rats. 2. Spontaneously hypertensive rats and Wistar-Kyoto rats were fed diets with three different Ca2+ contents, 0.1% (low-Ca2+ diet), 0.6% (normal-Ca2+ diet) and 4.0% (high-Ca2+ diet), between 6 and 20 weeks of age. At 20 weeks of age, the levels of erythrocyte Na+ efflux, as well as Na+ and K+ contents in erythrocytes, were measured. 3. On the low-Ca2+ diet, spontaneously hypertensive rats showed an enhancement of hypertension. Conversely, on the high-Ca2+ diet, they showed an attenuation of the increase in blood pressure. Spontaneously hypertensive rats had a lower erythrocyte Na+ content and increased activity of the Na+ pump at higher levels of dietary Ca2+. Passive Na+ permeability and Na+-K+ co-transport were similar in spontaneously hypertensive rats on the low-, normal- and high-Ca2+ diets. There were no significant differences in blood pressure and in Na+ pump activity in WKY on the three different diets. 4. It is concluded that dietary Ca2+ might affect the regulation of blood pressure in spontaneously hypertensive rats by changing the activity of Na+ pump in the cell membrane.



1994 ◽  
Vol 267 (4) ◽  
pp. H1250-H1253 ◽  
Author(s):  
S. Verma ◽  
S. Bhanot ◽  
J. H. McNeill

To determine the relationship between hyperinsulinemia and hypertension in spontaneously hypertensive rats (SHR), the antihyperglycemic agent metformin was administered to SHR and their Wistar-Kyoto (WKY) controls, and its effects on plasma insulin levels and blood pressure were examined. Five-week-old rats were started on oral metformin treatment (350 mg.kg-1.day-1, which was gradually increased to 500 mg.kg-1.day-1 over a 2-wk period). Metformin treatment caused sustained decreases in plasma insulin levels in the SHR (27.1 +/- 2.3 vs. untreated SHR 53.5 +/- 2.7 microU/ml, P < 0.001) without having any effect in the WKY (30.7 +/- 2.2 vs. untreated WKY 37.8 +/- 1.6 microU/ml, P > 0.05). The treatment did not affect the plasma glucose levels in any group. Metformin treatment also attenuated the increase in systolic blood pressure in the SHR (157 +/- 6.0 vs. untreated SHR 196 +/- 9.0 mmHg, P < 0.001) but had no effect in the WKY (134 +/- 3 vs. untreated WKY 136 +/- 4 mmHg, P > 0.05). Furthermore, raising plasma insulin levels in the metformin-treated SHR to levels that existed in the untreated SHR reversed the effect of metformin on blood pressure (189 +/- 3 vs. untreated SHR 208 +/- 5.0 mmHg, P > 0.05). These findings suggest that either hyperinsulinemia may contribute toward the increase in blood pressure in the SHR or that the underlying mechanism is closely associated with the expression of both these disorders.



2013 ◽  
Vol 31 (10) ◽  
pp. 2025-2035 ◽  
Author(s):  
Michal Behuliak ◽  
Mária Pintérová ◽  
Michal Bencze ◽  
Miriam Petrová ◽  
Silvia Líšková ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document