Transcutaneous electrical stimulation applied to the infratrochlear nerve induces a homatropine-resistant miosis in humans

1990 ◽  
Vol 78 (5) ◽  
pp. 457-462 ◽  
Author(s):  
B. M. Fusco ◽  
M. Alessandri ◽  
V. Campagnolo ◽  
M. Fanciullacci

1. Both high- and low-intensity transcutaneous electrical stimuli were applied to the emergence of the infratrochlear nerve in 18 healthy subjects. The effect on the size of the homolateral pupil was investigated. The width of the pupil was also measured when high-intensity transcutaneous electrical stimulation was applied to the contralateral side. 2. The high-intensity pulse resulted in constriction of the pupil when the stimulation was homolateral. The miosis was slow in onset (120 s latency) and long-lasting (80 s). No pupillary changes were detected after either ipsilateral low-intensity or contralateral high-intensity stimuli. 3. In 11 healthy subjects, the pupillary response to transcutaneous electrical stimulation was evaluated during iris parasympathetic blockade induced by homatropine eyedrops. The disappearance of the light reflex due to homatropine was considered an index of the parasympathetic blockade. Afterwards, a high-intensity pulse was transcutaneously delivered to the emergence of the infratrochlear nerve and the ipsilateral pupil size was measured. 4. A reduction in the pupillary size followed the electrical stimulation, still under the effect of homatropine which abolished the light reflex. The time course of this pupillary constriction was similar to that seen without the influence of homatropine. 5. The findings suggest that homolateral miosis, observed after unilateral high-intensity stimulation of the infratrochlear nerve, does not stem from cholinergic activation. It has been suggested that miosis induced by transcutaneous electrical stimulation may be due to an antidromic activation of the iris sensory fibres.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Wan-Ling Jiang ◽  
Hua-Jiang Wei ◽  
Zhou-Yi Guo ◽  
Yi-Rong Ni ◽  
Hong-Qin Yang ◽  
...  

Objective.The purpose of the study was to examine the effects of laser acupuncture (LA) at right Neiguan (RPC6)/left Neiguan (LPC6) acupoints on the releases of nitric oxide (NO) in the treated and contralateral/nontreated PC6, compared to the nonacupoint control area.Methods. 24 mW LA at RPC6, LPC6, and nonacupoint in 22 healthy subjects for 40 min: sterilized dialysis tube was taped to the nontreated PC6/nonacupoint during the treatment and immediately taped to the treated and nontreated PC6/nonacupoint after LA removal. NO-scavenging compound was injected into the tube for 40 min to absorb the molecular which was tested by spectrophotometry in a blinded fashion.Results. LA-induced NO releases over PC6 acupoints for the nontreated and treated sides all significantly increased after LA removal, but for the nontreated acupoints they did not change during LA stimulation. LA at RPC6 induced the more release of the NO at contralateral side than stimulating LPC6, but not on nonacupoints. The results suggest that LA-induced NO release over contralateral acupoint and NO release resulting from the lateralized specificity all are different and specific to the acupoint within different time course.Conclusions. LA-evoked NO release over acupoints could improve the neurogenic, endothelial activity of the vessel wall to further facilitate microcirculation.


1997 ◽  
Vol 10 (2-3) ◽  
pp. 61-65 ◽  
Author(s):  
A. D. Towell ◽  
D. Williams ◽  
S. G. Boyd

We investigated the effects of non-invasive high frequency (625Hz) stimulation over the spine on mechanical pain tolerance and subjective mood. Sixty healthy subjects were divided equally into three groups receiving either high intensity (250 V), low intensity (3–4 V) or sham electrical stimulation directly over the spinal cord for 30 minutes. Following high intensity stimulation, subjects felt significantly more elated, leisurely and less tense and, contrary to reports on patients with clinical pain, had lower mechanical pain tolerances. There were no correlations between changes in mood and changes in mechanical pain tolerances. These findings contrasted with the lack of any significant differences in mood or mechanical pain tolerances in a second study where 20 subjects received either high intensity or sham stimulation across the left shoulder joint. The results indicate that decreases in mechanical pain tolerance are independent of changes in mood following non-invasive high frequency, high intensity cutaneous stimulation but that both effects are dependent on that stimulation being applied over the spine.


2002 ◽  
Vol 96 (2) ◽  
pp. 306-312 ◽  
Author(s):  
Robert Greif ◽  
Sonja Laciny ◽  
Masoud Mokhtarani ◽  
Anthony G. Doufas ◽  
Maryam Bakhshandeh ◽  
...  

Background German anesthesiologists have long used transcutaneous electrical stimulation of an acupuncture point near the tragus to reduce anesthetic requirement in unblinded and uncontrolled trials. This is known as auricular electrically stimulated analgesia. The authors therefore tested the hypothesis that auricular electrically stimulated analgesia reduces anesthetic requirement. Methods In a randomized, double-blind, crossover trial, volunteers were anesthetized twice with desflurane. Electrical stimulation of an auricular acupuncture point in the vicinity of the tragus was used on 1 randomly assigned day, and no electrical stimulation of the same point was used on the other study day. Treatment consisted of bilateral electrical stimulation of the lateralization control point, 3 cm anterior to the tragus. The 10-mA current was set to 299 Hz on the dominant side of the face and to 149 Hz on the contralateral side. Anesthetic requirement was determined by the Dixon up-and-down method and was defined by the average desflurane concentration required to prevent purposeful movement of the extremities in response to noxious electrical stimulation. Results Ten men and 10 women completed the protocol. Electrical stimulation of the lateralization control point reduced anesthetic requirement by 11 +/- 7% (P < 0.001), with the reduction being similar in women and men. Women required more desflurane to prevent movement on the control day than the men (5.5 +/- 1.0 vs. 4.6 +/- 0.6 vol%; P = 0.028). Conclusion This double-blinded trial with an objective outcome demonstrates that electrical stimulation of the lateralization control point significantly reduces anesthetic requirement.


2017 ◽  
Vol 38 (13) ◽  
pp. 1009-1016 ◽  
Author(s):  
Eduardo Freitas ◽  
Christopher Poole ◽  
Ryan Miller ◽  
Aaron Heishman ◽  
Japneet Kaur ◽  
...  

AbstractThis study determined the time course for changes in muscle swelling and plasma volume following high (HI) and low-intensity resistance exercise with blood-flow restriction (LI-BFR). Ten male participants (22.1±3.0 yrs) completed three experimental conditions: high-intensity exercise (HI - 80% of 1RM), low-intensity exercise with BFR (LI-BFR –20% of 1RM, and 160 mmHg of BFR), and control (CON – no exercise or BFR). Muscle cross-sectional area (mCSA), muscle thickness, thigh circumference, and percentage change in plasma volume (PV%∆) were measured. mCSA was significantly greater than rest values at 15 min post-exercise (p<0.01) for HI and LI-BFR, and at 75 min post-exercise (p<0.01) for HI. Muscle thickness was significantly greater than rest immediately post-exercise (p<0.01) and 30 min post-exercise (p<0.01) for HI and LI-BFR, and at 60 min post-exercise for HI (p=0.01). Muscle thickness was greater for BFR immediately post-exercise compared to HI (p=0.01) post-exercise. Thigh circumference was significantly greater from rest at 15 min post-exercise (p=0.01) and at 75 min post-exercise for both LI-BFR (p=0.03) and HI (p<0.01). PV%∆ significantly decreased from rest immediately post-exercise for both HI (p<0.01) and LI-BFR (p<0.01). In conclusion, BFR exercise induces changes in muscle swelling and plasma volume similar to those observed at high-intensities.


1997 ◽  
Vol 77 (04) ◽  
pp. 685-689 ◽  
Author(s):  
Paul A Kyrle ◽  
Johannes Brockmeier ◽  
Ansgar Weltermann ◽  
Sabine Eichinger ◽  
Wolfgang Speiser ◽  
...  

SummaryCoumarin-induced skin necrosis is believed to be due to a transient hypercoagulable state resulting from a more rapid decline of the protein C activity relative to that of coagulation factors (F) II, IX and X during initiation of oral anticoagulant therapy. We studied hemostatic system activation during early oral anticoagulant treatment with a technique that investigates coagulation activation in the microcirculation.We determined in 10 healthy volunteers the concentrations of prothrombin fragment F1+2 (f1.2) and thrombin-antithrombin complex (TAT) in blood emerging from an injury of the microvasculature (bleeding time incision) before and after initiation of both high-inten- sity and low-intensity coumarin therapy. In addition, f1.2, TAT, activated F VII (F Vila) and the activities of FII, F VII, F X and protein C were measured in venous blood.A rapid decline of F VII and protein C was observed in venous blood with activities at 24 h of 7 ± 1% and 43 ± 2%, respectively, during the high-intensity regimen. A 20 to 30% reduction of f1.2 and TAT was seen in venous blood at 72 h with no major difference between the high- and the low-intensity regimen. F Vila levels were substantially affected by anticoagulation with a >90% reduction at 48 h during the high-intensity regimen. Following high-intensity coumarin, a >50% decrease in the fl.2 and TAT levels was found in shed blood at 48 h suggesting substantial inhibition of thrombin generation during early oral anticoagulation. An increase in the f1.2 and TAT levels was seen neither in shed blood nor in venous blood.Our data do not support the concept of a transient imbalance between generation and inhibition of thrombin as the underlying pathomechanism of coumarin-induced skin nekrosis.


Author(s):  
Goncalo V. Mendonca ◽  
Carolina Vila-Chã ◽  
Carolina Teodósio ◽  
André D. Goncalves ◽  
Sandro R. Freitas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document