CGS 34226, a thiol-based dual inhibitor of endothelin converting enzyme-1 and neutral endopeptidase 24.11

2002 ◽  
Vol 103 (s2002) ◽  
pp. 98S-101S ◽  
Author(s):  
Y. Arco JENG ◽  
Paula SAVAGE ◽  
Michael E. BEIL ◽  
Charles W. BRUSEO ◽  
Denton HOYER ◽  
...  

Endothelins (ETs) are potent vasoconstrictors and have been implicated in the pathogenesis of various cardiovascular and renal diseases. In contrast, atrial natriuretic peptide (ANP) is a potent vasorelaxant and diuretic agent, which is mainly degraded by neutral endopeptidase 24.11 (NEP) in vivo. Thus, compounds that can suppress the biosynthesis of ETs by inhibiting endothelin converting enzymes (ECEs), which catalyse the final step of post-translational processing of the vasoconstrictors, while simultaneously potentiating the levels of ANP by inhibiting NEP may have novel therapeutic utility. Through targeted screening of our compound library and subsequent optimization, CGS 34226 was identified as a potent, dual inhibitor of ECE-1 and NEP, inhibiting the enzymes with respective IC50 values of 11 and 4.6nM. In vivo, CGS 34226 suppressed the big endothelin-1 (big ET-1)-induced pressor response dose-dependently. At 15 and 90min after an intravenous dose of 30mg/kg in anaesthetized rats, this compound inhibited the big ET-1-induced effect by 79% and 65% respectively. In addition, CGS 34226 increased plasma ANP immunoreactivity by 120% up to 4h after an intravenous dose of 10mg/kg in conscious rats infused with ANP at a rate of 450ng/kg per min, intravenously. These results show that CGS 34226 is a potent dual inhibitor of ECE-1 and NEP in vitro and in vivo and that the compound may represent a novel agent for the treatment of cardiovascular and renal dysfunction.

Oncology ◽  
2005 ◽  
Vol 69 (1) ◽  
pp. 52-62 ◽  
Author(s):  
Mikio Terauchi ◽  
Hiroaki Kajiyama ◽  
Kiyosumi Shibata ◽  
Kazuhiko Ino ◽  
Shigehiko Mizutani ◽  
...  

1991 ◽  
Vol 80 (3) ◽  
pp. 265-269 ◽  
Author(s):  
N. B. Shepperson ◽  
P. L. Barclay ◽  
J. A. Bennett ◽  
G. M. R. Samuels

1. Atrial natriuretic factor is metabolized by neutral endopeptidase (atriopeptidase; EC 3.4.24.11) in vitro. Inhibitors of this enzyme have been reported to prolong the half-life of atrial natriuretic factor in vivo and to potentiate the renal and haemodynamic effects of exogenous atrial natriuretic factor. 2. (±)-Candoxatrilat, a selective neutral endopeptidase inhibitor, potentiated the natriuretic and diuretic response to volume loading in anaesthetized rats. Part of the response to volume loading and the potentiation by (±)-candoxatrilat was prevented by a polyclonal atrial natriuretic factor antiserum. The diuretic and natriuretic responses evoked by hydrochlorothiazide were not altered by the antiserum. 3. (±)-Candoxatrilat reduced systolic blood pressure of one-kidney deoxycorticosterone acetate-salt hypertensive rats for over 5 h. This response was abolished by pretreatment with atrial natriuretic factor antiserum. 4. These data demonstrate that the neutral endopeptidase inhibitor (±)-candoxatrilat has natriuretic/diuretic and antihypertensive effects in rodents, and that these effects are mediated via endogenous atrial natriuretic factor.


2005 ◽  
Vol 11 (5) ◽  
pp. 1798-1808 ◽  
Author(s):  
Hiroaki Kajiyama ◽  
Kiyosumi Shibata ◽  
Mikio Terauchi ◽  
Takanori Morita ◽  
Kazuhiko Ino ◽  
...  

2019 ◽  
Vol 26 (7) ◽  
pp. 494-501 ◽  
Author(s):  
Sameer Suresh Bhagyawant ◽  
Dakshita Tanaji Narvekar ◽  
Neha Gupta ◽  
Amita Bhadkaria ◽  
Ajay Kumar Gautam ◽  
...  

Background: Diabetes and hypertension are the major health concern and alleged to be of epidemic proportions. This has made it a numero uno subject at various levels of investigation. Glucosidase inhibitor provides the reasonable option in treatment of Diabetes Mellitus (DM) as it specifically targets post prandial hyperglycemia. The Angiotensin Converting Enzyme (ACE) plays an important role in hypertension. Therefore, inhibition of ACE in treatment of elevated blood pressure attracts special interest of the scientific community. Chickpea is a food legume and seeds contain carbohydrate binding protein- a lectin. Some of the biological properties of this lectin hitherto been elucidated. Methods: Purified by ion exchange chromatography, chickpea lectin was tested for its in vitro antioxidant, ACE-I inhibitory and anti-diabetic characteristic. Results: Lectin shows a characteristic improvement over the synthetic drugs like acarbose (oral anti-diabetic drug) and captopril (standard antihypertensive drug) when, their IC50 values are compared. Lectin significantly inhibited α-glucosidase and α-amylase in a concentration dependent manner with IC50 values of 85.41 ± 1.21 ҝg/ml and 65.05 ± 1.2 µg/ml compared to acarbose having IC50 70.20 ± 0.47 value of µg/ml and 50.52 ± 1.01 µg/ml respectively. β-Carotene bleaching assay showed antioxidant activity of lectin (72.3%) to be as active as Butylated Hydroxylanisole (BHA). In addition, lectin demonstrated inhibition against ACE-I with IC50 value of 57.43 ± 1.20 µg/ml compared to captopril. Conclusion: Lectin demonstrated its antioxidant character, ACE-I inhibition and significantly inhibitory for α-glucosidase and α-amylase seems to qualify as an anti-hyperglycemic therapeutic molecule. The biological effects of chickpea lectin display potential for reducing the parameters of medically debilitating conditions. These characteristics however needs to be established under in vivo systems too viz. animals through to humans.


2020 ◽  
Vol 16 ◽  
Author(s):  
Haicheng Liu ◽  
Yushi Futamura ◽  
Honghai Wu ◽  
Aki Ishiyama ◽  
Taotao Zhang ◽  
...  

Background: Malaria is one of the most devastating parasitic diseases, yet the discovery of antimalarial agents remains profoundly challenging. Very few new antimalarials have been developed in the past 50 years, while the emergence of drug-resistance continues to appear. Objective: This study focuses on the discovery, design, synthesis, and antimalarial evaluation of 3-cinnamamido-N-substituted benzamides. Method: In this study, a screening of our compound library was carried out against the multidrug-sensitive Plasmodium falciparum 3D7 strain. Derivatives of the hit were designed, synthesized and tested against P. falciparum 3D7 and the in vivo antimalarial activity of the most active compounds was evaluated using the method of Peters’ 4-day suppressive test. Results: The retrieved hit compound 1 containing a 3-cinnamamido-N-substituted benzamide skeleton showed moderate antimalarial activity (IC50 = 1.20 µM) for the first time. A series of derivatives were then synthesized through a simple four-step workflow, and half of them exhibited slightly better antimalarial effect than the precursor 1 during the subsequent in vitro assays. Additionally, compounds 11, 23, 30 and 31 displayed potent activity with IC50 values of approximately 0.1 µM, and weak cytotoxicity against mammalian cells. However, in vivo antimalarial activity is not effective which might be ascribed to the poor solubility of these compounds. Conclusion: In this study, phenotypic screen of our compound library resulted in the first report of 3-cinnamamide framework with antimalarial activity and 40 derivatives were then designed and synthesized. Subsequent structure-activity studies showed that compounds 11, 23, 30 and 31 exhibited the most potent and selective activity against P. falciparum 3D7 strain with IC50 values around 0.1 µM. Our work herein sets another example of phenotypic screen-based drug discovery, leading to potentially promising candidates of novel antimalarial agents once given further optimization.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 656
Author(s):  
Rubina Munir ◽  
Muhammad Zia-ur-Rehman ◽  
Shahzad Murtaza ◽  
Sumera Zaib ◽  
Noman Javid ◽  
...  

Alzheimer’s disease (AD), a progressive neurodegenerative disorder, characterized by central cognitive dysfunction, memory loss, and intellectual decline poses a major public health problem affecting millions of people around the globe. Despite several clinically approved drugs and development of anti-Alzheimer’s heterocyclic structural leads, the treatment of AD requires safer hybrid therapeutics with characteristic structural and biochemical properties. In this endeavor, we herein report a microwave-assisted synthesis of a library of quinoline thiosemicarbazones endowed with a piperidine moiety, achieved via the condensation of 6/8-methyl-2-(piperidin-1-yl)quinoline-3-carbaldehydes and (un)substituted thiosemicarbazides. The target N-heterocyclic products were isolated in excellent yields. The structures of all the synthesized compounds were fully established using readily available spectroscopic techniques (FTIR, 1H- and 13C-NMR). Anti-Alzheimer potential of the synthesized heterocyclic compounds was evaluated using acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. The in vitro biochemical assay results revealed several compounds as potent inhibitors of both enzymes. Among them, five compounds exhibited IC50 values less than 20 μM. N-(3-chlorophenyl)-2-((8-methyl-2-(piperidin-1-yl)quinolin-3-yl)methylene)hydrazine carbothioamide emerged as the most potent dual inhibitor of AChE and BChE with IC50 values of 9.68 and 11.59 μM, respectively. Various informative structure–activity relationship (SAR) analyses were also concluded indicating the critical role of substitution pattern on the inhibitory efficacy of the tested derivatives. In vitro results were further validated through molecular docking analysis where interactive behavior of the potent inhibitors within the active pocket of enzymes was established. Quinoline thiosemicarbazones were also tested for their cytotoxicity using MTT assay against HepG2 cells. Among the 26 novel compounds, there were five cytotoxical and 18 showed proliferative properties.


Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 532
Author(s):  
Hae-Soo Yun ◽  
Sylvatrie-Danne Dinzouna-Boutamba ◽  
Sanghyun Lee ◽  
Zin Moon ◽  
Dongmi Kwak ◽  
...  

In traditional Chinese medicine, Ranunculus japonicus has been used to treat various diseases, including malaria, and the young stem of R. japonicus is consumed as a food in the Republic of Korea. However, experimental evidence of the antimalarial effect of R. japonicus has not been evaluated. Therefore, the antimalarial activity of the extract of the young stem of R. japonicus was evaluated in vitro using both chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) strains; in vivo activity was evaluated in Plasmodium berghei-infected mice via oral administration followed by a four-day suppressive test focused on biochemical and hematological parameters. Exposure to extracts of R. japonicus resulted in significant inhibition of both chloroquine-sensitive (3D7) and resistant (Dd2) strains of P. falciparum, with IC50 values of 6.29 ± 2.78 and 5.36 ± 4.93 μg/mL, respectively. Administration of R. japonicus also resulted in potent antimalarial activity against P. berghei in infected mice with no associated toxicity; treatment also resulted in improved hepatic, renal, and hematologic parameters. These results demonstrate the antimalarial effects of R. japonicus both in vitro and in vivo with no apparent toxicity.


2006 ◽  
Vol 396 (2) ◽  
pp. 277-285 ◽  
Author(s):  
Chrysoula Panethymitaki ◽  
Paul W. Bowyer ◽  
Helen P. Price ◽  
Robin J. Leatherbarrow ◽  
Katherine A. Brown ◽  
...  

The eukaryotic enzyme NMT (myristoyl-CoA:protein N-myristoyltransferase) has been characterized in a range of species from Saccharomyces cerevisiae to Homo sapiens. NMT is essential for viability in a number of human pathogens, including the fungi Candida albicans and Cryptococcus neoformans, and the parasitic protozoa Leishmania major and Trypanosoma brucei. We have purified the Leishmania and T. brucei NMTs as active recombinant proteins and carried out kinetic analyses with their essential fatty acid donor, myristoyl-CoA and specific peptide substrates. A number of inhibitory compounds that target NMT in fungal species have been tested against the parasite enzymes in vitro and against live parasites in vivo. Two of these compounds inhibit TbNMT with IC50 values of <1 μM and are also active against mammalian parasite stages, with ED50 (the effective dose that allows 50% cell growth) values of 16–66 μM and low toxicity to murine macrophages. These results suggest that targeting NMT could be a valid approach for the development of chemotherapeutic agents against infectious diseases including African sleeping sickness and Nagana.


Sign in / Sign up

Export Citation Format

Share Document