Effect of metformin therapy on cardiac function and survival in a volume-overload model of heart failure in rats

2011 ◽  
Vol 121 (1) ◽  
pp. 29-41 ◽  
Author(s):  
Jan Benes ◽  
Ludmila Kazdova ◽  
Zdenek Drahota ◽  
Josef Houstek ◽  
Dasa Medrikova ◽  
...  

Advanced HF (heart failure) is associated with altered substrate metabolism. Whether modification of substrate use improves the course of HF remains unknown. The antihyperglycaemic drug MET (metformin) affects substrate metabolism, and its use might be associated with improved outcome in diabetic HF. The aim of the present study was to examine whether MET would improve cardiac function and survival also in non-diabetic HF. Volume-overload HF was induced in male Wistar rats by creating ACF (aortocaval fistula). Animals were randomized to placebo/MET (300 mg·kg−1 of body weight·day−1, 0.5% in food) groups and underwent assessment of metabolism, cardiovascular and mitochondrial functions (n=6–12/group) in advanced HF stage (week 21). A separate cohort served for survival analysis (n=10–90/group). The ACF group had marked cardiac hypertrophy, increased LVEDP (left ventricular end-diastolic pressure) and lung weight confirming decompensated HF, increased circulating NEFAs (non-esterified ‘free’ fatty acids), intra-abdominal fat depletion, lower glycogen synthesis in the skeletal muscle (diaphragm), lower myocardial triacylglycerol (triglyceride) content and attenuated myocardial 14C-glucose and 14C-palmitate oxidation, but preserved mitochondrial respiratory function, glucose tolerance and insulin sensitivity. MET therapy normalized serum NEFAs, decreased myocardial glucose oxidation, increased myocardial palmitate oxidation, but it had no effect on myocardial gene expression, AMPK (AMP-activated protein kinase) signalling, ATP level, mitochondrial respiration, cardiac morphology, function and long-term survival, despite reaching therapeutic serum levels (2.2±0.7 μg/ml). In conclusion, MET-induced enhancement of myocardial fatty acid oxidation had a neutral effect on cardiac function and survival. Recently reported cardioprotective effects of MET may not be universal to all forms of HF and may require AMPK activation or ATP depletion. No increase in mortality on MET supports its safe use in diabetic HF.

2018 ◽  
Vol 315 (3) ◽  
pp. H463-H473 ◽  
Author(s):  
Elia C. El Hajj ◽  
Milad C. El Hajj ◽  
Van K. Ninh ◽  
Jason D. Gardner

The cardiac extracellular matrix is a complex architectural network that serves many functions, including providing structural and biochemical support to surrounding cells and regulating intercellular signaling pathways. Cardiac function is directly affected by extracellular matrix (ECM) composition, and alterations of the ECM contribute to the progression of heart failure. Initially, collagen deposition is an adaptive response that aims to preserve tissue integrity and maintain normal ventricular function. However, the synergistic effects of proinflammatory and profibrotic responses induce a vicious cycle, which causes excess activation of myofibroblasts, significantly increasing collagen deposition and accumulation in the matrix. Furthermore, excess synthesis and activation of the enzyme lysyl oxidase (LOX) during disease increases collagen cross-linking, which significantly increases collagen resistance to degradation by matrix metalloproteinases (MMPs). In the present study, the aortocaval fistula model of volume overload (VO) was used to determine whether LOX inhibition could prevent adverse changes in the ECM and subsequent cardiac dysfunction. The major findings from this study were that LOX inhibition 1) prevented VO-induced increases in left ventricular wall stress; 2) partially attenuated VO-induced ventricular hypertrophy; 3) completely blocked the increases in fibrotic proteins, including collagens, MMPs, and their tissue inhibitors; and 4) prevented the VO-induced decline in cardiac function. It remains unclear whether a direct interaction between LOX and MMPs exists; however, our experiments suggest a potential link between the two because LOX inhibition completely attenuated VO-induced increases in MMPs. Overall, our study demonstrated key cardioprotective effects of LOX inhibition against adverse cardiac remodeling due to chronic VO. NEW & NOTEWORTHY Although the primary role of lysyl oxidase (LOX) is to cross-link collagens, we found that elevated LOX during cardiac disease plays a key role in the progression of heart failure. Here, we show that inhibition of LOX in volume-overloaded rats prevented the development of cardiac dysfunction and improved ventricular collagen and matrix metalloproteinase/tissue inhibitor of metalloproteinase profiles.


2014 ◽  
Vol 307 (9) ◽  
pp. H1307-H1316 ◽  
Author(s):  
Georgios Karamanlidis ◽  
Lorena Garcia-Menendez ◽  
Stephen C. Kolwicz ◽  
Chi Fung Lee ◽  
Rong Tian

Mitochondrial dysfunction in animal models of heart failure is associated with downregulation of the peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α pathway. To test whether PGC-1α is an appropriate therapeutic target for increasing mitochondrial biogenesis and improving function in heart failure, we used a transgenic (TG) mouse model of moderate overexpression of PGC-1α (∼3-fold) in the heart. TG mice had small increases in citrate synthase activity and mitochondria size in the heart without alterations in myocardial energetics or cardiac function at baseline. In vivo dobutamine stress increased fractional shortening in wild-type mice, but this increase was attenuated in TG mice, whereas ex vivo isolated perfused TG hearts demonstrated normal functional and energetic response to high workload challenge. When subjected to pressure overload by transverse aortic constriction (TAC), TG mice displayed a significantly greater acute mortality for both male and female mice; however, long-term survival up to 8 wk was similar between the two groups. TG mice also showed a greater decrease in fractional shortening and a greater increase in left ventricular chamber dimension in response to TAC. Mitochondrial gene expression and citrate synthase activity were mildly increased in TG mice compared with wild-type mice, and this difference was also maintained after TAC. Our data suggest that a moderate level of PGC-1α overexpression in the heart compromises acute survival and does not improve cardiac function during chronic pressure overload in mice.


2010 ◽  
Vol 13 (1) ◽  
pp. 31 ◽  
Author(s):  
Federico Benetti ◽  
Ernesto Pe�herrera ◽  
Teodoro Maldonado ◽  
Yan Duarte Vera ◽  
Valvanur Subramanian ◽  
...  

Background: End-stage heart failure (HF) is refractory to current standard medical therapy, and the number of donor hearts is insufficient to meet the demand for transplantation. Recent studies suggest autologous stem cell therapy may regenerate cardiomyocytes, stimulate neovascularization, and improve cardiac function and clinical status. Although human fetal-derived stem cells (HFDSCs) have been studied for the treatment of a variety of conditions, no clinical studies have been reported to date on their use in treating HF. We sought to determine the efficacy and safety of HFDSC treatment in HF patients.Methods and Results: Direct myocardial transplantation of HFDSCs by open-chest surgical procedure was performed in 10 patients with HF due to nonischemic, nonchagasic dilated cardiomyopathy. Before and after the procedure, and with no changes in their preoperative doses of medications (digoxin, furosemide, spironolactone, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, betablockers), patients were assessed for New York Heart Association (NYHA) class, performance in the exercise tolerance test (ETT), ejection fraction (EF), left ventricular end-diastolic dimension (LVEDD) via transthoracic echocardiography, performance in the 6-minute walk test, and performance in the Minnesota congestive HF test. All 10 patients survived the operation. One patient had a stroke 3 days after the procedure, and although she later recovered, she was unable to perform the follow-up tests. Another male patient experienced pericardial effusion 3 weeks after the procedure. Although it resolved spontaneously, the patient abandoned his control tests and died 5 months after the procedure. An autopsy of the myocardium suggested that new young cells were present in the cardiomyocyte mix. At 40 months, the mean (SD) NYHA class decreased from 3.4 0.5 to 1.33 0.5 (P = .001); the mean EF increased 31%, from 26.6% 4% to 34.8% 7.2% (P = .005); and the mean ETT increased 291.3%, from 4.25 minutes to 16.63 minutes (128.9% increase in metabolic equivalents, from 2.46 to 5.63) (P < .0001); the mean LVEDD decreased 15%, from 6.85 0.6 cm to 5.80 0.58 cm (P < .001); mean performance in the 6-minute walk test increased by 43.2%, from 251 113.1 seconds to 360 0 seconds (P = .01); the mean distance increased 64.4%, from 284.4 144.9 m to 468.2 89.8 m (P = .004); and the mean result in the Minnesota test decreased from 71 27.3 to 6 5.9 (P < .001).Conclusion: Although these initial findings suggest direct myocardial implantation of HFDSCs is feasible and improves cardiac function in HF patients at 40 months, more clinical research is required to confirm these observations.


2021 ◽  
Author(s):  
Bálint Károly Lakatos ◽  
Mihály Ruppert ◽  
Márton Tokodi ◽  
Attila Oláh ◽  
Szilveszter Braun ◽  
...  

2014 ◽  
Vol 9 ◽  
pp. IMI.S13939 ◽  
Author(s):  
Bandi Hari Krishna ◽  
Pravati Pal ◽  
G. K. Pal ◽  
J. Balachander ◽  
E. Jayasettiaseelon ◽  
...  

Aims The purpose of this study was to evaluate whether yoga training in addition to standard medical therapy can improve cardiac function and reduce N terminal pro B-type natriuretic peptide (NT pro BNP) in heart failure (HF). Methods 130 patients were recruited and randomized into two groups: Control Group (CG) ( n = 65), Yoga Group (YG). In YG, 44 patients and in CG, 48 patients completed the study. Cardiac function using left ventricular ejection fraction (LVEF), myocardial performance index (Tei index), and NT pro BNP, a biomarker of HF, was assessed at baseline and after 12 weeks. Result Improvement in LVEF, Tei index, and NT pro BNP were statistically significant in both the groups. Furthermore, when the changes in before and after 12 weeks were in percentage, LVEF increased 36.88% in the YG and 16.9% in the CG, Tei index was reduced 27.87% in the YG and 2.79% in the CG, NT pro BNP was reduced 63.75% in the YG and 10.77% in the CG. The between group comparisons from pre to post 12 weeks were significant for YG improvements (LVEF, P < 0.01, Tei index, P < 0.01, NT pro BNP, P < 0.01). Conclusion These results indicate that the addition of yoga therapy to standard medical therapy for HF patients has a markedly better effect on cardiac function and reduced myocardial stress measured using NT pro BNP in patients with stable HF.


2013 ◽  
Vol 115 (10) ◽  
pp. 1572-1580 ◽  
Author(s):  
Vigdis Hillestad ◽  
Frank Kramer ◽  
Stefan Golz ◽  
Andreas Knorr ◽  
Kristin B. Andersson ◽  
...  

In human heart failure (HF), reduced cardiac function has, at least partly, been ascribed to altered calcium homeostasis in cardiomyocytes. The effects of the calcium sensitizer levosimendan on diastolic dysfunction caused by reduced removal of calcium from cytosol in early diastole are not well known. In this study, we investigated the effect of long-term levosimendan treatment in a murine model of HF where the sarco(endo)plasmatic reticulum ATPase ( Serca) gene is specifically disrupted in the cardiomyocytes, leading to reduced removal of cytosolic calcium. After induction of Serca2 gene disruption, these mice develop marked diastolic dysfunction as well as impaired contractility. SERCA2 knockout (SERCA2KO) mice were treated with levosimendan or vehicle from the time of KO induction. At the 7-wk end point, cardiac function was assessed by echocardiography and pressure measurements. Vehicle-treated SERCA2KO mice showed significantly diminished left-ventricular (LV) contractility, as shown by decreased ejection fraction, stroke volume, and cardiac output. LV pressure measurements revealed a marked increase in the time constant (τ) of isovolumetric pressure decay, showing impaired relaxation. Levosimendan treatment significantly improved all three systolic parameters. Moreover, a significant reduction in τ toward normalization indicated improved relaxation. Gene-expression analysis, however, revealed an increase in genes related to production of the ECM in animals treated with levosimendan. In conclusion, long-term levosimendan treatment improves both contractility and relaxation in a heart-failure model with marked diastolic dysfunction due to reduced calcium transients. However, altered gene expression related to fibrosis was observed.


2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
M Tokodi ◽  
BK Lakatos ◽  
M Ruppert ◽  
A Olah ◽  
AA Sayour ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – National budget only. Main funding source(s): This work was supported by the New National Excellence Programme (ÚNKP-19-3-I) of the Ministry for Innovation and Technology in Hungary, and the Artificial Intelligence Research Field Excellence Programme of the National Research, Development and Innovation Office of the Ministry of Innovation and Technology in Hungary. Background Global longitudinal strain (GLS) by speckle-tracking echocardiography (STE) is a sensitive parameter of left ventricular (LV) systolic function. Nevertheless, GLS is dependent on loading conditions. Through the analysis of pressure-strain loops, myocardial work was recently introduced and tested in different clinical scenarios. Myocardial work incorporates afterload, but still, it neglects changes in preload and LV geometry. Purpose Accordingly, our aim was to test our hypothesis that adding instantaneous LV size to myocardial work calculation can further mitigate the load-dependency of GLS, and therefore, a better correlation with intrinsic myocardial contractility can be achieved. Methods Volume overload-induced heart failure was established by an aortocaval fistula (ACF) in male Wistar rats (n = 12). Age-matched sham-operated animals served as controls (n = 12). STE was performed to assess GLS, which was immediately followed by invasive pressure-volume (P-V) analysis to assess LV pressure and to compute a gold-standard index of cardiac contractility (preload recruitable stroke work [PRSW]). Global myocardial work index (GMWI) was calculated from GLS and the invasively measured LV pressure. To compute GMWI indexed to LV area (GMWIA), the instantaneous power (calculated by multiplying the strain rate and the instantaneous LV pressure) was divided by the instantaneous LV area, and then it was integrated from mitral valve closure until mitral valve opening. Results LV ejection fraction did not differ significantly (ACF vs. controls: 59 ± 4 vs. 65 ± 9%, p = NS), whereas GLS (Figure 1A - representative animals) was slightly decreased in the ACF group (-13.2 ± 2.3 vs. -15.4 ± 1.9%, p &lt; 0.05). In contrast, PRSW, GMWI (Figure 1B - representative animals) and GMWIA (Figure 1C - representative animals) were considerably reduced in ACF compared to controls (57 ± 13 vs. 111 ± 38mmHg, 1383 ± 382 vs. 1928 ± 281mmHg%, 11.6 ± 3.7 vs. 47.9 ± 22.8mmHg%/mm2, all p &lt; 0.01). GLS showed moderate correlation with PRSW (r=-0.550, p &lt; 0.01), whereas GMWI correlated more significantly, but still moderately with the invasively measured LV contractility (r = 0.681, p &lt; 0.001). Correlation between the pressure-area-strain loop-derived GMWIA and P-V analysis-derived PRSW (Figure 1D) was found to be very strong (r = 0.924, p &lt; 0.001). Conclusions In the case of LV volume overload-induced heart failure, our pressure-area-strain loop-derived metric reflected LV contractility better than GLS and even GMWI. Therefore, the incorporation of instantaneous LV size into myocardial work calculation represents a promising clinical tool to assess and monitor intrinsic myocardial function independently of loading conditions. Abstract Figure 1


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Sven T Pleger ◽  
Changguang Shan ◽  
Jan Kziencek ◽  
Oliver Mueller ◽  
Raffi Bekeredjian ◽  
...  

Background: Cardiac expression of the Ca-dependent inotropic protein S100A1 is decreased in human end-stage heart failure (HF) and cardiomyocyte-targeted viral-based S100A1 gene transfer rescued failing myocardium in small animal models in vivo and in vitro via improved systolic and diastolic sarcoplasmic reticulum Ca-handling. We therefore hypothesized that cardioselective AAV9-S100A1 gene therapy will improve cardiac performance in a large animal experimental HF model under clinical conditions. Methods and Results: Left ventricular (LV) posterolateral myocardial infarction (MI) was induced in pigs by occlusion of the left coronary circumflex artery and resulted in LV failure (HF) 2 weeks post-MI reflected by a 40% and 27% reduction in LV +dp/dt max. and EF, respectively, as assessed by LV catheterization and echocardiography. Post-MI HF pigs were then randomized for retroinfusion of AAV9-luciferase (luc; n=6, 1.5×10 13 total viral particles, tvp) and AAV9-S100A1 (S100A1; n=6, 1.5×10 13 tvp) driven by a cardioselective promoter via the anterior cardiac vein while the left anterior descending artery was temporarily occluded. 14 weeks after cardiac gene transfer, the S100A1-treated HF group showed significantly enhanced S100A1 protein expression (+46.7±17.9%, P<0.05 vs. control groups) in targeted remote LV myocardium and improved indices of cardiac function and remodeling (luc vs. S100A1: +dp/dtmax: 983±81 vs. 1526±83 mmHg/s, EF: 39±2.1 vs. 61±3.7 %, P<0.05 S100A1 vs. luc, LV endsystolic diameter: luc 4.45±0.1 vs. S100A1 3.43 ±0.1 cm, P<0.05 S100A1 vs. luc, HR: 72±4 vs. 69±2, beats/min, P=n.s. S100A1 vs. luc). Importantly, analyses of renal, hepatic and hematopoetic function showed no alteration as assessed by unchanged transaminases, retention values and white blood cell counts compared to sham pigs. Conclusions: Our translational study provides proof of concept that AAV9-S100A1 based HF gene therapy is feasible and restores cardiac function in a large animal HF model under clinical conditions. Next, certified toxicological analysis and different AAV9-S100A1 dosage protocols will be assessed to eventually advance to first phase I/II clinical studies determining therapeutic efficiency of cardiac S100A1 gene therapy in HF patients.


Sign in / Sign up

Export Citation Format

Share Document