scholarly journals Colchicine therapy in acute coronary syndrome patients acts on caspase-1 to suppress NLRP3 inflammasome monocyte activation

2016 ◽  
Vol 130 (14) ◽  
pp. 1237-1246 ◽  
Author(s):  
Stacy Robertson ◽  
Gonzalo J. Martínez ◽  
Cloe A. Payet ◽  
Jennifer Y. Barraclough ◽  
David S. Celermajer ◽  
...  

Inflammasome activation in monocytes is elevated in acute coronary syndrome (ACS) patients compared with healthy subjects. Acute colchicine therapy dramatically suppresses this activation, via inhibition of caspase-1 gene transcription leading to reduced secretion of interleukin-1β (IL-1β), supporting a beneficial role for colchicine in atherosclerosis.

2020 ◽  
Vol 1 (4) ◽  
pp. 4-8
Author(s):  
Liemena Harold Adrian ◽  
Budi Satrijo ◽  
Djanggan Sargowo ◽  
Indra Prasetya

Background: Despite the advances of current optimal treatment of atherosclerotic disease, the incidence of events after acute coronary syndrome (ACS) remains high. Colchicine, with its well-established pleiotropic anti-inflam- matory effects, may inhibit NLRP3 inflammasome, a key mediator in atherosclerosis-associated inflammation (AAI) thus reducing systemic inflammation. NRLP3 inflammasome activation inside leukocytes (mainly monocytes and neutrophils) is precipitated by cholesterol crystals that are present in all atherosclerosis stages. 􏰟􏰋􏰡􏰈􏰇􏱎􏰋􏰇􏰆􏰂 􏰍􏰀􏰂􏰅􏰩􏰍􏰂􏰅􏰃􏰆 􏰃􏰜 􏰢􏰎􏰃􏰐􏰅􏰆􏰜􏰏􏰍􏰝􏰝􏰍􏰂􏰃􏰎􏰁 􏰀􏰁􏰂􏰃􏰄􏰅􏰆􏰇􏰈 􏰈􏰋􏰀􏰌 􏰍􏰈 􏰅􏰆􏰂􏰇􏰎􏰏􏰇􏰋􏰄􏰅􏰆􏰐􏰑􏰒 􏰍􏰆􏰗 􏰅􏰆􏰂􏰇􏰎􏰏􏰇􏰋􏰄􏰅􏰆􏰐􏰑􏰣 􏰳􏰅􏰏􏰏 􏰜􏰃􏰏􏰏􏰃􏰳􏰨 􏰘􏰌􏰇􏰈􏰇 cytokines are the crucial inflammatory pathway mediators that promote the formation of plaque and instability in the inflammatory cascade. Objective: This review will elaborate on the function of immune cells in atherosclerosis, explain the mechanisms of NLRP3 inflammasome activation in the context of AAI, and address the possible role of colchicine specifically targeting NLRP3 inflammasome and its concomitant downstream mediators in ACS, and provide an overview of current or ongoing studies produced in this area. Discussion : NRLP3 inflammasome activation inside leukocytes (mainly monocytes and neutrophils) is precipitat- ed by cholesterol crystals that are present in all atherosclerosis stages. Subsequent activation of pro-inflammatory pathway mediators that promote the formation of plaque and instability in the inflammatory cascade. A potential advantage of a medication acting through an inflammatory milieu found in atherosclerotic lesions has recently become the need for novel therapeutic options. Colchicine, with its well-established pleiotropic anti-inflammato- ry effects, may inhibit NLRP3 inflammasome, a key mediator in atherosclerosis-associated inflammation (AAI) thus reducing systemic inflammation. Conclusion: Colchicine is a safe and reliable medication for ACS patients, alongside reveal various benefit in reducing inflammation through inhibition of NLRP3 Inflammasome`


2015 ◽  
Vol 83 (7) ◽  
pp. 2917-2925 ◽  
Author(s):  
Junji Matsuo ◽  
Shinji Nakamura ◽  
Seiji Takeda ◽  
Kasumi Ishida ◽  
Tomohiro Yamazaki ◽  
...  

The obligate intracellular bacteriumChlamydia pneumoniaeis not only a causative agent of community-acquired pneumonia but is also associated with a more serious chronic disease, asthma, which might be exacerbated by air pollution containing carbon nanoparticles. Although a detailed mechanism of exacerbation remains unknown, the proinflammatory cytokine interleukin-1β (IL-1β) is a critical player in the pathogenesis of asthma.C. pneumoniaeinduces IL-1β in macrophages via NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome activation and Toll-like receptor 2/4 (TLR2/4) stimulation. Carbon nanoparticles, such as carbon nanotubes (CNTs), can also evoke the NLRP3 inflammasome to trigger IL-1β secretion from lipopolysaccharide-primed macrophages. This study assessed whether costimulation ofC. pneumoniaewith CNTs synergistically enhanced IL-1β secretion from macrophages, and determined the molecular mechanism involved. Enhanced IL-1β secretion fromC. pneumoniae-infected macrophages by CNTs was dose and time dependent. Transmission electron microscopy revealed thatC. pneumoniaeand CNTs were engulfed concurrently by macrophages. Inhibitors of actin polymerization or caspase-1, a component of the inflammasome, significantly blocked IL-1β secretion. Gene silencing using small interfering RNA (siRNA) targeting the NLRP3 gene also abolished IL-1β secretion. Other inhibitors (K+efflux inhibitor, cathepsin B inhibitor, and reactive oxygen species-generating inhibitor) also blocked IL-1β secretion. Taken together, these findings demonstrated that CNTs synergistically enhanced IL-1β secretion fromC. pneumoniae-infected macrophages via the NLRP3 inflammasome and caspase-1 activation, providing novel insight into our understanding of howC. pneumoniaeinfection can exacerbate asthma.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jianjian Dong ◽  
Xun Wang ◽  
Chenchen Xu ◽  
Manli Gao ◽  
Shijing Wang ◽  
...  

AbstractWilson’s disease (WD) is an inherited disorder characterized by excessive accumulation of copper in the body, particularly in the liver and brain. In the central nervous system (CNS), extracellular copper accumulation triggers pathological microglial activation and subsequent neurotoxicity. Growing evidence suggests that levels of inflammatory cytokines are elevated in the brain of murine WD models. However, the mechanisms associated with copper deposition to neuroinflammation have not been completely elucidated. In this study, we investigated how the activation of NLR family pyrin domain containing 3 (NLRP3) inflammasome contributes to copper-mediated neuroinflammation in an animal model of WD. Elevated levels of interleukin-1β, interleukin-18, interleukin-6, and tumor necrosis factor-α were observed in the sera of WD patients and toxic milk (TX) mice. The protein levels of inflammasome adaptor molecule apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC), cleaved caspase-1, and interleukin-1β were upregulated in the brain regions of the TX mice. The NLRP3 inflammasome was activated in the TX mice brains. Furthermore, the activation of NLRP3 inflammasome was noted in primary microglia treated with CuCl2, accompanied by the increased levels of cleaved caspase-1, ASC, and interleukin-1β. Blocking NLRP3 inflammasome activation with siNlrp3 or MCC950 reduced interleukin-1β and interleukin-18 production, thereby effectively mitigating cognitive decline, locomotor behavior impairment, and neurodegeneration in TX mice. Overall, our study demonstrates the contribution of copper overload-mediated activation of NLRP3 inflammasome to progressive neuropathology in the CNS of a murine model of WD. Therefore, blockade of the NLRP3 inflammasome activation could be a potential therapeutic strategy for WD.


2013 ◽  
Vol 81 (8) ◽  
pp. 2997-3008 ◽  
Author(s):  
Wei Li ◽  
Barry P. Katz ◽  
Margaret E. Bauer ◽  
Stanley M. Spinola

ABSTRACTRecognition of microbial infection by certain intracellular pattern recognition receptors leads to the formation of a multiprotein complex termed the inflammasome. Inflammasome assembly activates caspase-1 and leads to cleavage and secretion of the proinflammatory cytokines interleukin-1 beta (IL-1β) and IL-18, which help control many bacterial pathogens. However, excessive inflammation mediated by inflammasome activation can also contribute to immunopathology. Here, we investigated whetherHaemophilus ducreyi, a Gram-negative bacterium that causes the genital ulcer disease chancroid, activates inflammasomes in experimentally infected human skin and in monocyte-derived macrophages (MDM). AlthoughH. ducreyiis predominantly extracellular during human infection, several inflammasome-related components were transcriptionally upregulated inH. ducreyi-infected skin. Infection of MDM with live, but not heat-killed,H. ducreyiinduced caspase-1- and caspase-5-dependent processing and secretion of IL-1β. Blockage ofH. ducreyiuptake by cytochalasin D significantly reduced the amount of secreted IL-1β. Knocking down the expression of the inflammasome components NLRP3 and ASC abolished IL-1β production. Consistent with NLRP3-dependent inflammasome activation, blocking ATP signaling, K+efflux, cathepsin B activity, and lysosomal acidification all inhibited IL-1β secretion. However, inhibition of the production and function of reactive oxygen species did not decrease IL-1β production. Polarization of macrophages to classically activated M1 or alternatively activated M2 cells abrogated IL-1β secretion elicited byH. ducreyi. Our study data indicate thatH. ducreyiinduces NLRP3 inflammasome activation via multiple mechanisms and suggest that the heterogeneity of macrophages within human lesions may modulate inflammasome activation during human infection.


2019 ◽  
Vol 147 ◽  
pp. 104348 ◽  
Author(s):  
Jiasi Wu ◽  
Yu Luo ◽  
Qing Jiang ◽  
Sheng Li ◽  
Wenge Huang ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Pengxiao Chen ◽  
Qi Bai ◽  
Yanting Wu ◽  
Qiongzhen Zeng ◽  
Xiaowei Song ◽  
...  

Artemisia argyi H. Lév. and Vaniot is a traditional medical herb that has been used for a long time in China and other Asian counties. Essential oil is the main active fraction of Artemisia argyi H. Lév. and Vaniot, and its anti-inflammatory potential has been observed in vitro and in vivo. Here, we found that the essential oil of Artemisia argyi H. Lév. and Vaniot (EOAA) inhibited monosodium urate (MSU)- and nigericin-induced NLRP3 inflammasome activation. EOAA suppressed caspase-1 and IL-1β processing and pyroptosis. NF-κB p65 phosphorylation and translocation were also inhibited. In addition, EOAA suppressed nigericin-induced NLRP3 inflammasome activation without blocking ASC oligomerization, suggesting that it may inhibit NLRP3 inflammasome activation by preventing caspase-1 processing. Our study thus indicates that EOAA inhibits NLRP3 inflammasome activation and has therapeutic potential against NLRP3-driven diseases.


2021 ◽  
Vol 5 (5) ◽  
pp. 1523-1534
Author(s):  
Johan Courjon ◽  
Océane Dufies ◽  
Alexandre Robert ◽  
Laurent Bailly ◽  
Cédric Torre ◽  
...  

Abstract Dysregulated immune response is the key factor leading to unfavorable coronavirus disease 2019 (COVID-19) outcome. Depending on the pathogen-associated molecular pattern, the NLRP3 inflammasome can play a crucial role during innate immunity activation. To date, studies describing the NLRP3 response during severe acute respiratory syndrome coronavirus 2 infection in patients are lacking. We prospectively monitored caspase-1 activation levels in peripheral myeloid cells from healthy donors and patients with mild to critical COVID-19. The caspase-1 activation potential in response to NLRP3 inflammasome stimulation was opposed between nonclassical monocytes and CD66b+CD16dim granulocytes in severe and critical COVID-19 patients. Unexpectedly, the CD66b+CD16dim granulocytes had decreased nigericin-triggered caspase-1 activation potential associated with an increased percentage of NLRP3 inflammasome impaired immature neutrophils and a loss of eosinophils in the blood. In patients who recovered from COVID-19, nigericin-triggered caspase-1 activation potential in CD66b+CD16dim cells was restored and the proportion of immature neutrophils was similar to control. Here, we reveal that NLRP3 inflammasome activation potential differs among myeloid cells and could be used as a biomarker of a COVID-19 patient’s evolution. This assay could be a useful tool to predict patient outcome. This trial was registered at www.clinicaltrials.gov as #NCT04385017.


2018 ◽  
Vol 11 (2) ◽  
pp. 305-316 ◽  
Author(s):  
Kaivan Vaidya ◽  
Clare Arnott ◽  
Gonzalo J. Martínez ◽  
Bernard Ng ◽  
Samuel McCormack ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Hong-Su Park ◽  
Yao Lu ◽  
Kannupriya Pandey ◽  
GuanQun Liu ◽  
Yan Zhou

Nucleotide-binding domain and leucine-rich repeat-containing protein 3 (NLRP3) inflammasome-mediated interleukin-1 beta (IL-1β) production is one of the crucial responses in innate immunity upon infection with viruses including influenza A virus (IAV) and is modulated by both viral and host cellular proteins. Among host proteins involved, we identified tripartite motif-containing protein 25 (TRIM25) as a positive regulator of porcine NLRP3 inflammasome-mediated IL-1β production. TRIM25 achieved this function by enhancing the pro-caspase-1 interaction with apoptosis-associated speck-like protein containing caspase recruitment domain (ASC). The N-terminal RING domain, particularly residues predicted to be critical for the E3 ligase activity of TRIM25, was responsible for this enhancement. However, non-structural protein 1 (NS1) C-terminus of 2009 pandemic IAV interfered with this action by interacting with TRIM25, leading to diminished association between pro-caspase-1 and ASC. These findings demonstrate that TRIM25 promotes the IL-1β signaling, while it is repressed by IAV NS1 protein, revealing additional antagonism of the NS1 against host pro-inflammatory responses.


Sign in / Sign up

Export Citation Format

Share Document