Perfecting DNA double-strand break repair on transcribed chromatin

2020 ◽  
Vol 64 (5) ◽  
pp. 705-719 ◽  
Author(s):  
Xin Yi Tan ◽  
Michael S.Y. Huen

Abstract Timely repair of DNA double-strand break (DSB) entails coordination with the local higher order chromatin structure and its transaction activities, including transcription. Recent studies are uncovering how DSBs trigger transient suppression of nearby transcription to permit faithful DNA repair, failing of which leads to elevated chromosomal aberrations and cell hypersensitivity to DNA damage. Here, we summarize the molecular bases for transcriptional control during DSB metabolism, and discuss how the exquisite coordination between the two DNA-templated processes may underlie maintenance of genome stability and cell homeostasis.

2021 ◽  
Vol 8 ◽  
Author(s):  
Alejandra Fernandez ◽  
Connor O’Leary ◽  
Kenneth J O’Byrne ◽  
Joshua Burgess ◽  
Derek J Richard ◽  
...  

Upon the induction of DNA damage, the chromatin structure unwinds to allow access to enzymes to catalyse the repair. The regulation of the winding and unwinding of chromatin occurs via epigenetic modifications, which can alter gene expression without changing the DNA sequence. Epigenetic mechanisms such as histone acetylation and DNA methylation are known to be reversible and have been indicated to play different roles in the repair of DNA. More importantly, the inhibition of such mechanisms has been reported to play a role in the repair of double strand breaks, the most detrimental type of DNA damage. This occurs by manipulating the chromatin structure and the expression of essential proteins that are critical for homologous recombination and non-homologous end joining repair pathways. Inhibitors of histone deacetylases and DNA methyltransferases have demonstrated efficacy in the clinic and represent a promising approach for cancer therapy. The aims of this review are to summarise the role of histone deacetylase and DNA methyltransferase inhibitors involved in DNA double strand break repair and explore their current and future independent use in combination with other DNA repair inhibitors or pre-existing therapies in the clinic.


Author(s):  
Seo Yun Lee ◽  
Jae Jin Kim ◽  
Kyle M Miller

Abstract Post-translational modifications of proteins are well-established participants in DNA damage response (DDR) pathways, which function in the maintenance of genome integrity. Emerging evidence is starting to reveal the involvement of modifications on RNA in the DDR. RNA modifications are known regulators of gene expression but how and if they participate in DNA repair and genome maintenance has been poorly understood. Here, we review several studies that have now established RNA modifications as key components of DNA damage responses. RNA modifying enzymes and the binding proteins that recognize these modifications localize to and participate in the repair of UV-induced and DNA double-strand break lesions. RNA modifications have a profound effect on DNA–RNA hybrids (R-loops) at DNA damage sites, a structure known to be involved in DNA repair and genome stability. Given the importance of the DDR in suppressing mutations and human diseases such as neurodegeneration, immunodeficiencies, cancer and aging, RNA modification pathways may be involved in human diseases not solely through their roles in gene expression but also by their ability to impact DNA repair and genome stability.


2019 ◽  
Vol 116 (30) ◽  
pp. 15288-15296 ◽  
Author(s):  
Jieming Jiang ◽  
Ning Mao ◽  
Huan Hu ◽  
Jiahang Tang ◽  
Danlu Han ◽  
...  

DNA damage decreases genome stability and alters genetic information in all organisms. Conserved protein complexes have been evolved for DNA repair in eukaryotes, such as the structural maintenance complex 5/6 (SMC5/6), a chromosomal ATPase involved in DNA double-strand break (DSB) repair. Several factors have been identified for recruitment of SMC5/6 to DSBs, but this complex is also associated with chromosomes under normal conditions; how SMC5/6 dissociates from its original location and moves to DSB sites is completely unknown. In this study, we determined that SWI3B, a subunit of the SWI/SNF complex, is an SMC5-interacting protein in Arabidopsis thialiana. Knockdown of SWI3B or SMC5 results in increased DNA damage accumulation. During DNA damage, SWI3B expression is induced, but the SWI3B protein is not localized at DSBs. Notably, either knockdown or overexpression of SWI3B disrupts the DSB recruitment of SMC5 in response to DNA damage. Overexpression of a cotranscriptional activator ADA2b rescues the DSB localization of SMC5 dramatically in the SWI3B-overexpressing cells but only weakly in the SWI3B knockdown cells. Biochemical data confirmed that ADA2b attenuates the interaction between SWI3B and SMC5 and that SWI3B promotes the dissociation of SMC5 from chromosomes. In addition, overexpression of SMC5 reduces DNA damage accumulation in the SWI3B knockdown plants. Collectively, these results indicate that the presence of an appropriate level of SWI3B enhances dissociation of SMC5 from chromosomes for its further recruitment at DSBs during DNA damage in plant cells.


Genetics ◽  
2021 ◽  
Author(s):  
Tingting Li ◽  
Ruben C Petreaca ◽  
Susan L Forsburg

Abstract Chromatin remodeling is essential for effective repair of a DNA double strand break. KAT5 (S. pombe Mst1, human TIP60) is a MYST family histone acetyltransferase conserved from yeast to humans that coordinates various DNA damage response activities at a DNA double strand break (DSB), including histone remodeling and activation of the DNA damage checkpoint. In S. pombe, mutations in mst1+ causes sensitivity to DNA damaging drugs. Here we show that Mst1 is recruited to DSBs. Mutation of mst1+ disrupts recruitment of repair proteins and delays resection. These defects are partially rescued by deletion of pku70, which has been previously shown to antagonize repair by homologous recombination. These phenotypes of mst1 are similar to pht1-4KR, a non-acetylatable form of histone variant H2A.Z, which has been proposed to affect resection. Our data suggest that Mst1 functions to direct repair of DSBs towards homologous recombination pathways by modulating resection at the double strand break.


2018 ◽  
Vol 115 (8) ◽  
pp. E1759-E1768 ◽  
Author(s):  
Jung-Kuei Chen ◽  
Wen-Ling Lin ◽  
Zhang Chen ◽  
Hung-wen Liu

Maintenance of genome integrity is critical for both faithful propagation of genetic information and prevention of mutagenesis induced by various DNA damage events. Here we report cold-inducible RNA-binding protein (CIRBP) as a newly identified key regulator in DNA double-strand break (DSB) repair. On DNA damage, CIRBP temporarily accumulates at the damaged regions and is poly(ADP ribosyl)ated by poly(ADP ribose) polymerase-1 (PARP-1). Its dissociation from the sites of damage may depend on its phosphorylation status as mediated by phosphatidylinositol 3-kinase-related kinases. In the absence of CIRBP, cells showed reduced γH2AX, Rad51, and 53BP1 foci formation. Moreover, CIRBP-depleted cells exhibited impaired homologous recombination, impaired nonhomologous end-joining, increased micronuclei formation, and higher sensitivity to gamma irradiation, demonstrating the active involvement of CIRBP in DSB repair. Furthermore, CIRBP depleted cells exhibited defects in DNA damage-induced chromatin association of the MRN complex (Mre11, Rad50, and NBS1) and ATM kinase. CIRBP depletion also reduced phosphorylation of a variety of ATM substrate proteins and thus impaired the DNA damage response. Taken together, these results reveal a previously unrecognized role for CIRBP in DSB repair.


Sign in / Sign up

Export Citation Format

Share Document