Auditory Brainstem Responses in Young Males With Fragile X Syndrome

2005 ◽  
Vol 48 (2) ◽  
pp. 494-500 ◽  
Author(s):  
Joanne Roberts ◽  
Elizabeth A. Hennon ◽  
Kathleen Anderson ◽  
Jackson Roush ◽  
Judith Gravel ◽  
...  

Fragile X syndrome (FXS) is the most common inherited cause of mental retardation resulting in developmental delays in males. Atypical outer ear morphology is characteristic of FXS and may serve as a marker for abnormal auditory function. Despite this abnormality, studies of the hearing of young males with FXS are generally lacking. A few studies have suggested that a significant proportion of individuals with FXS demonstrate prolonged auditory brainstem response (ABR) latencies. The purpose of this study was to determine whether young males with FXS display atypical auditory brainstem function compared to typically developing males when conductive and sensorineural hearing loss are ruled out as possible contributors to atypical findings. Participants were 23 males with FXS, 21 typically developing males who were matched for developmental age, and 17 typically developing males who were matched for chronological age. A battery of tests to assess peripheral hearing, cochlear function, and auditory pathway integrity through the level of the brainstem was completed. Males with FXS were similar to typically developing males who were matched for developmental age level or chronological age level on all measures. They had normal hearing sensitivity and middle ear function and scored similar to the typically developing children on the measures of auditory brainstem pathway integrity. In summary, ABRs in young males with FXS were within normal limits.

2021 ◽  
Author(s):  
Amita Chawla ◽  
Elizabeth A McCullagh

Sensory hypersensitivity, especially in the auditory system, is a common symptom in Fragile X Syndrome (FXS), the most common monogenic form of intellectual disability. However, linking phenotypes across genetic background strains of mouse models has been a challenge and could underly some of the issues with translatability of drug studies to the human condition. This study is the first to characterize the auditory brainstem response (ABR), a minimally invasive physiological readout of early auditory processing that is also used in humans, in a commonly used mouse background strain model of FXS, C57BL/6J. We measured morphological features of pinna and head and used ABR to measure hearing range, monaural and binaural auditory responses in hemizygous males, homozygous females and heterozygous females compared to wildtype mice. Consistent with previous work we showed no difference in morphological parameters across genotypes or sexes. Male FXS mice had increased threshold for high frequency hearing at 64 kHz compared to wildtype males, while females had no difference in hearing range between genotypes. In contrast, female homozygous FXS mice had decreased amplitude of wave IV of the monaural ABR, while there was no difference in males for amplitudes and no change in latency of ABR waveforms across sexes and genotypes. Lastly, FXS males had increased latency of the binaural interaction component (BIC) at 0 ITD compared to wildtype males. These findings further clarify auditory brainstem processing in FXS by adding more information across genetic background strains allowing for a better understanding of shared phenotypes.


2007 ◽  
Vol 122 (6) ◽  
pp. 574-579 ◽  
Author(s):  
O Zagólski

AbstractBackground:The influence of congenital cytomegalovirus infection on cochlear function has been well recognised; however, its impact on the vestibular system in infants has not been examined. The purpose of the present study was to evaluate vestibular function in a group of infants, using caloric stimulation tests and vestibular-evoked myogenic potential measurements.Materials and methods:Vestibular-evoked myogenic potentials and auditory brainstem responses were recorded and caloric stimulation was performed in 66 infants aged three months, comprising 40 healthy controls and 26 infants with congenital cytomegalovirus infection.Results:No reaction to caloric stimulation was elicited from 16 examined ears, no vestibular-evoked myogenic potentials were recorded from 12 ears, and profound sensorineural hearing loss was diagnosed in eight ears. Pathological results were observed predominantly in infants with symptoms of intrauterine congenital cytomegalovirus infection present at birth.Conclusions:In infants with clinical symptoms of congenital CMV infection present at birth, abnormal vestibular test results occurred more frequently than abnormal auditory brainstem response results. Vestibular organs should be routinely examined in individuals with congenital cytomegalovirus infection.


2019 ◽  
Vol 28 (1) ◽  
pp. 114-124
Author(s):  
Linda W. Norrix ◽  
Julie Thein ◽  
David Velenovsky

Purpose Low residual noise (RN) levels are critically important when obtaining electrophysiological recordings of threshold auditory brainstem responses. In this study, we examine the effectiveness and efficiency of Kalman-weighted averaging (KWA) implemented on the Vivosonic Integrity System and artifact rejection (AR) implemented on the Intelligent Hearing Systems SmartEP system for obtaining low RN levels. Method Sixteen adults participated. Electrophysiological measures were obtained using simultaneous recordings by the Vivosonic and Intelligent Hearing Systems for subjects in 2 relaxed conditions and 4 active motor conditions. Three averaging times were used for the relaxed states (1, 1.5, and 3 min) and for the active states (1.5, 3, and 6 min). Repeated-measures analyses of variance were used to examine RN levels as a function of noise reduction strategy (i.e., KWA, AR) and averaging time. Results Lower RN levels were obtained using KWA than AR in both the relaxed and active motor states. Thus, KWA was more effective than was AR under the conditions examined in this study. Using KWA, approximately 3 min of averaging was needed in the relaxed condition to obtain an average RN level of 0.025 μV. In contrast, in the active motor conditions, approximately 6 min of averaging was required using KWA. Mean RN levels of 0.025 μV were not attained using AR. Conclusions When patients are not physiologically quiet, low RN levels are more likely to be obtained and more efficiently obtained using KWA than AR. However, even when using KWA, in active motor states, 6 min of averaging or more may be required to obtain threshold responses. Averaging time needed and whether a low RN level can be attained will depend on the level of motor activity exhibited by the patient.


2020 ◽  
Vol 63 (11) ◽  
pp. 3877-3892
Author(s):  
Ashley Parker ◽  
Candace Slack ◽  
Erika Skoe

Purpose Miniaturization of digital technologies has created new opportunities for remote health care and neuroscientific fieldwork. The current study assesses comparisons between in-home auditory brainstem response (ABR) recordings and recordings obtained in a traditional lab setting. Method Click-evoked and speech-evoked ABRs were recorded in 12 normal-hearing, young adult participants over three test sessions in (a) a shielded sound booth within a research lab, (b) a simulated home environment, and (c) the research lab once more. The same single-family house was used for all home testing. Results Analyses of ABR latencies, a common clinical metric, showed high repeatability between the home and lab environments across both the click-evoked and speech-evoked ABRs. Like ABR latencies, response consistency and signal-to-noise ratio (SNR) were robust both in the lab and in the home and did not show significant differences between locations, although variability between the home and lab was higher than latencies, with two participants influencing this lower repeatability between locations. Response consistency and SNR also patterned together, with a trend for higher SNRs to pair with more consistent responses in both the home and lab environments. Conclusions Our findings demonstrate the feasibility of obtaining high-quality ABR recordings within a simulated home environment that closely approximate those recorded in a more traditional recording environment. This line of work may open doors to greater accessibility to underserved clinical and research populations.


2021 ◽  
Vol 11 (1) ◽  
pp. 38-46
Author(s):  
Fan-Yin Cheng ◽  
Craig A. Champlin

Temporal acuity is the ability to differentiate between sounds based on fluctuations in the waveform envelope. The proximity of successive sounds and background noise diminishes the ability to track rapid changes between consecutive sounds. We determined whether a physiological correlate of temporal acuity is also affected by these factors. We recorded the auditory brainstem response (ABR) from human listeners using a harmonic complex (S1) followed by a brief tone burst (S2) with the latter serving as the evoking signal. The duration and depth of the silent gap between S1 and S2 were manipulated, and the peak latency and amplitude of wave V were measured. The latency of the responses decreased significantly as the duration or depth of the gap increased. The amplitude of the responses was not affected by the duration or depth of the gap. These findings suggest that changing the physical parameters of the gap affects the auditory system’s ability to encode successive sounds.


Author(s):  
Jane E. Roberts ◽  
Bridgette Tonnsen ◽  
Ashley Robinson ◽  
Svetlana V. Shinkareva

Abstract The present study contrasted physiological arousal in infants and toddlers with fragile X syndrome to typically developing control participants and examined physiological predictors early in development to autism severity later in development in fragile X syndrome. Thirty-one males with fragile X syndrome (ages 8–40 months) and 25 age-matched control participants were included. The group with fragile X syndrome showed shorter interbeat intervals (IBIs), lower vagal tone (VT), and less modulation of IBI. Data suggested a nonlinear effect with IBI and autistic behavior; however, a linear effect with VT and autistic behavior emerged. These findings suggest that atypical physiological arousal emerges within the first year and predicts severity of autistic behavior in fragile X syndrome. These relationships are complex and dynamic, likely reflecting endogenous factors assumed to reflect atypical brain function secondary to reduced fragile X mental retardation protein. This research has important implications for the early identification and treatment of autistic behaviors in young children with fragile X syndrome.


2019 ◽  
Vol 2 (1) ◽  
pp. 17-21
Author(s):  
Adil Munir ◽  
Nazia Mumtaz ◽  
Ghulam Saqulain ◽  
Munir Ahmad

Objective: Hearing loss (HL) with a local prevalence of 5.7%, is the commonest childhood disability, requiring Early Hearing Detection and Intervention (EHDI) programs to reduce the disability burden. Knowing the degree, type and configuration of HL is prerequisite for appropriate amplification, with Automated Auditory Brainstem Responses (ABR) being commonly used for this purpose, however Auditory Steady State Response (ASSR) has been recently introduced in the region. This study was conducted to compare ABR to ASSR, as an early diagnostic tool in children under five years of age. Methodology: This cross-sectional comparative study was performed at the Auditory Verbal Institute of Audiology and Speech (AVIAS) clinics in Rawalpindi and Islamabad, from December 2016 to September 2017. It included thirty-two cases (n=32) who visited AVIAS clinics for hearing assessment and conformed to the investigative protocol using non probability convenient sampling technique, and subjected to both ABR and ASSR for comparative purposes. Correlations were calculated between the thresholds obtained by ABR and ASSR. Results: N=32 children (64 ears) with male female ratio of 2.2:1 and mean age of 33.50±17.73 months were tested with ABR and ASSR for hearing thresholds and correlation coefficient between 2KHz, 4KHz ASSR and average of both with ABR was calculated to be 0.92 and 0.90 and 0.94 respectively. Conclusion: ASSR provides additional frequency specific hearing threshold estimation compared to C-ABR, essentially required for proper setting of amplification devices. 


2008 ◽  
Vol 65 (9) ◽  
pp. 1087 ◽  
Author(s):  
Fumiko Hoeft ◽  
Amy A. Lightbody ◽  
Heather Cody Hazlett ◽  
Swetapadma Patnaik ◽  
Joseph Piven ◽  
...  

2018 ◽  
Vol 81 ◽  
pp. 73-88 ◽  
Author(s):  
Stephen R. Hooper ◽  
Deborah Hatton ◽  
John Sideris ◽  
Kelly Sullivan ◽  
Peter A. Ornstein ◽  
...  

PEDIATRICS ◽  
1989 ◽  
Vol 83 (3) ◽  
pp. 385-392
Author(s):  
Steven J. Kramer ◽  
Dianne R. Vertes ◽  
Marie Condon

Auditory brainstem response (ABR) evaluations were performed on 667 high-risk infants from an infant special care unit. Of these infants, 82% passed the ABR. Those infants who failed the ABR were classified into two groups, those who failed at 30 dB hearing level and those who failed at 45 dB hearing level. All of the infants were encouraged to return for otologic/audiologic follow-up in 1, 3, or 6 months, depending on the initial ABR results. All of the infants with severe hearing impairments came from the group who failed at 45 dB hearing level. The incidence of severe sensorineural hearing impairment in this population was estimated to be 2.4%. For the group that failed at 30 dB hearing level, 80% of those who were abnormal at follow-up were considered to have conductive hearing disorders and 20% had mild sensorineural hearing impairments. In addition, infants enrolled in a parent-infant program for hearing impaired by 6 months of age were from the ABR program; however, several infants entered the parent-infant program at a relatively late age because they did not meet the high-risk criteria, they were from other hospitals, or they were not detected by the ABR program.


Sign in / Sign up

Export Citation Format

Share Document