Graduate Theses in Speech and Hearing Research, 1957

1959 ◽  
Vol 2 (1) ◽  
pp. 91-98 ◽  
Author(s):  
Franklin H. Knower
Keyword(s):  
Author(s):  
Zhixian Wang ◽  
Pinjin Zhu ◽  
Jianhe Sun ◽  
Xuezheng Song

Hearing research is important not only for clinical, professional and military medicine, but also for toxicology, gerontology and genetics. Ultrastructure of the cochlea attracts much attention of electron microscopists, (1―3) but the research lags far behind that of the other parts of the organnism. On the basis of careful microdissection, technical improvment and accurate observation, we have got some new findings which have not been reported in the literature.We collected four cochleas from human corpses. Temporal bones dissected 1 h after death and cochleas perfused with fixatives 4 h after death were good enough in terms of preservation of fine structures. SEM:The apical surface of OHCs (Outer hair cells) and DTs (Deiters cells) is narrower than that of IPs (Inner pillar cells). The mosaic configuration of the reticular membrane is not typical. The stereocilia of IHCs (Inner hair cells) are not uniform and some kinocilia could be seen on the OHCs in adults. The epithelial surface of RM (Reissner’s membrane) is not smooth and no mesh could be seen on the mesothelial surface of RM. TEM.


2021 ◽  
Vol 25 ◽  
pp. 233121652110093
Author(s):  
Patrycja Książek ◽  
Adriana A. Zekveld ◽  
Dorothea Wendt ◽  
Lorenz Fiedler ◽  
Thomas Lunner ◽  
...  

In hearing research, pupillometry is an established method of studying listening effort. The focus of this study was to evaluate several pupil measures extracted from the Task-Evoked Pupil Responses (TEPRs) in speech-in-noise test. A range of analysis approaches was applied to extract these pupil measures, namely (a) pupil peak dilation (PPD); (b) mean pupil dilation (MPD); (c) index of pupillary activity; (d) growth curve analysis (GCA); and (e) principal component analysis (PCA). The effect of signal-to-noise ratio (SNR; Data Set A: –20 dB, –10 dB, +5 dB SNR) and luminance (Data Set B: 0.1 cd/m2, 360 cd/m2) on the TEPRs were investigated. Data Sets A and B were recorded during a speech-in-noise test and included TEPRs from 33 and 27 normal-hearing native Dutch speakers, respectively. The main results were as follows: (a) A significant effect of SNR was revealed for all pupil measures extracted in the time domain (PPD, MPD, GCA, PCA); (b) Two time series analysis approaches (GCA, PCA) provided modeled temporal profiles of TEPRs (GCA); and time windows spanning subtasks performed in a speech-in-noise test (PCA); and (c) All pupil measures revealed a significant effect of luminance. In conclusion, multiple pupil measures showed similar effects of SNR, suggesting that effort may be reflected in multiple aspects of TEPR. Moreover, a direct analysis of the pupil time course seems to provide a more holistic view of TEPRs, yet further research is needed to understand and interpret its measures. Further research is also required to find pupil measures less sensitive to changes in luminance.


Author(s):  
Suhani Sharma ◽  
Rajesh Tripathy ◽  
Udit Saxena

Speech in noise tests that measure the perception of speech in presence of noise are now an important part of audiologic tests battery and hearing research as well. There are various tests available to estimate the perception of speech in presence of noise, for example, connected sentence test, hearing in noise test, words in noise, quick speech-in-noise test, bamford-kowal-bench speech-in-noise test, and listening in spatialized noise-sentences. All these tests are different in terms of target age, measure, procedure, speech material, noise, normative, etc. Because of the variety of tests available to estimate speech-in-noise abilities, audiologists often select tests based on their availability, ease to administer the test, time required in running the test, age of the patient, hearing status, type of hearing disorder and type of amplification device if using. A critical appraisal of these speech-in-noise tests is required for the evidence based selection and to be used in audiology clinics. In this article speech-in-noise tests were critically appraised for their conceptual model, measurement model, normatives, reliability, validity, responsiveness, item/instrument bias, respondent burden and administrative burden. Selection of a standard speech-in-noise test based on this critical appraisal will also allow an easy comparison of speech-in-noise ability of any hearing impaired individual or group across audiology clinics and research centers. This article also describes the survey which was done to grade the speech in noise tests on the various appraisal characteristics.


2020 ◽  
Vol 41 (Supplement 1) ◽  
pp. 91S-98S ◽  
Author(s):  
Frances Rapport ◽  
Sarah E. Hughes

2006 ◽  
Vol 06 (04) ◽  
pp. L339-L347 ◽  
Author(s):  
MICHAEL BUSCHERMÖHLE ◽  
ULRIKE FEUDEL ◽  
GEORG M. KLUMP ◽  
MARK A. BEE ◽  
JAN A. FREUND

Signal detection in fluctuating background noise is a common problem in diverse fields of research and technology. It has been shown in hearing research that the detection of signals in noise that is correlated in amplitude across the frequency spectrum (comodulated) can be improved compared to uncorrelated background noise. We show that the mechanism leading to this effect is a general phenomenon which may be utilized in other areas where signal detection in comodulated noise needs to be done with a limited frequency resolution. Our model is based on neurophysiological experiments. The proposed signal detection scheme evaluates a fluctuating envelope, the statistics of which depend on the correlation structure across the spectrum of the noise. In our model, signal detection does not require a sophisticated neuronal network but can be accomplished through the encoding of the compressed stimulus envelope in the firing rate of neurons in the auditory system.


Sign in / Sign up

Export Citation Format

Share Document