Enhancement of Word-Recognition Performance With a Filtering Technique

1991 ◽  
Vol 34 (6) ◽  
pp. 1436-1438 ◽  
Author(s):  
Richard H. Wilson ◽  
John P. Preece ◽  
Courtney S. Crowther

The NU No. 6 materials spoken by a female speaker were passed through a notch filter centered at 247 Hz with a 34-dB depth The filtering reduced the amplitude range within the spectrum of the materials by 10 dB that was reflected as a 7.5-vu reduction measured on a true vu meter. Thus, the notch filtering in effect changed the level calibration of the materials. Psychometric functions of the NU No. 6 materials filtered and unfiltered in 60-dB SPL broadband noise were obtained from 12 listeners with normal hearing. Although the slopes of the functions for the two conditions were the same, the functions were displaced by an average of 5 8 dB with the function for the filtered materials located at the lower sound-pressure levels.

2020 ◽  
Vol 63 (6) ◽  
pp. 2016-2026
Author(s):  
Tamara R. Almeida ◽  
Clayton H. Rocha ◽  
Camila M. Rabelo ◽  
Raquel F. Gomes ◽  
Ivone F. Neves-Lobo ◽  
...  

Purpose The aims of this study were to characterize hearing symptoms, habits, and sound pressure levels (SPLs) of personal audio system (PAS) used by young adults; estimate the risk of developing hearing loss and assess whether instructions given to users led to behavioral changes; and propose recommendations for PAS users. Method A cross-sectional study was performed in 50 subjects with normal hearing. Procedures included questionnaire and measurement of PAS SPLs (real ear and manikin) through the users' own headphones and devices while they listened to four songs. After 1 year, 30 subjects answered questions about their usage habits. For the statistical analysis, one-way analysis of variance, Tukey's post hoc test, Lin and Spearman coefficients, the chi-square test, and logistic regression were used. Results Most subjects listened to music every day, usually in noisy environments. Sixty percent of the subjects reported hearing symptoms after using a PAS. Substantial variability in the equivalent music listening level (Leq) was noted ( M = 84.7 dBA; min = 65.1 dBA, max = 97.5 dBA). A significant difference was found only in the 4-kHz band when comparing the real-ear and manikin techniques. Based on the Leq, 38% of the individuals exceeded the maximum daily time allowance. Comparison of the subjects according to the maximum allowed daily exposure time revealed a higher number of hearing complaints from people with greater exposure. After 1 year, 43% of the subjects reduced their usage time, and 70% reduced the volume. A volume not exceeding 80% was recommended, and at this volume, the maximum usage time should be 160 min. Conclusions The habit of listening to music at high intensities on a daily basis seems to cause hearing symptoms, even in individuals with normal hearing. The real-ear and manikin techniques produced similar results. Providing instructions on this topic combined with measuring PAS SPLs may be an appropriate strategy for raising the awareness of people who are at risk. Supplemental Material https://doi.org/10.23641/asha.12431435


2008 ◽  
Vol 19 (06) ◽  
pp. 496-506 ◽  
Author(s):  
Richard H. Wilson ◽  
Rachel McArdle ◽  
Heidi Roberts

Background: So that portions of the classic Miller, Heise, and Lichten (1951) study could be replicated, new recorded versions of the words and digits were made because none of the three common monosyllabic word lists (PAL PB-50, CID W-22, and NU–6) contained the 9 monosyllabic digits (1–10, excluding 7) that were used by Miller et al. It is well established that different psychometric characteristics have been observed for different lists and even for the same materials spoken by different speakers. The decision was made to record four lists of each of the three monosyllabic word sets, the monosyllabic digits not included in the three sets of word lists, and the CID W-1 spondaic words. A professional female speaker with a General American dialect recorded the materials during four recording sessions within a 2-week interval. The recording order of the 582 words was random. Purpose: To determine—on listeners with normal hearing—the psychometric properties of the five speech materials presented in speech-spectrum noise. Research Design: A quasi-experimental, repeated-measures design was used. Study Sample: Twenty-four young adult listeners (M = 23 years) with normal pure-tone thresholds (≤20-dB HL at 250 to 8000 Hz) participated. The participants were university students who were unfamiliar with the test materials. Data Collection and Analysis: The 582 words were presented at four signal-to-noise ratios (SNRs; −7-, −2-, 3-, and 8-dB) in speech-spectrum noise fixed at 72-dB SPL. Although the main metric of interest was the 50% point on the function for each word established with the Spearman-Kärber equation (Finney, 1952), the percentage correct on each word at each SNR was evaluated. The psychometric characteristics of the PB-50, CID W-22, and NU–6 monosyllabic word lists were compared with one another, with the CID W-1 spondaic words, and with the 9 monosyllabic digits. Results: Recognition performance on the four lists within each of the three monosyllabic word materials were equivalent, ±0.4 dB. Likewise, word-recognition performance on the PB-50, W-22, and NU–6 word lists were equivalent, ±0.2 dB. The mean recognition performance at the 50% point with the 36 W-1 spondaic words was ˜6.2 dB lower than the 50% point with the monosyllabic words. Recognition performance on the monosyllabic digits was 1–2 dB better than mean performance on the monosyllabic words. Conclusions: Word-recognition performances on the three sets of materials (PB-50, CID W-22, and NU–6) were equivalent, as were the performances on the four lists that make up each of the three materials. Phonetic/phonemic balance does not appear to be an important consideration in the compilation of word-recognition lists used to evaluate the ability of listeners to understand speech.A companion paper examines the acoustic, phonetic/phonological, and lexical variables that may predict the relative ease or difficulty for which these monosyllable words were recognized in noise (McArdle and Wilson, this issue).


2020 ◽  
Vol 31 (07) ◽  
pp. 531-546
Author(s):  
Mitzarie A. Carlo ◽  
Richard H. Wilson ◽  
Albert Villanueva-Reyes

Abstract Background English materials for speech audiometry are well established. In Spanish, speech-recognition materials are not standardized with monosyllables, bisyllables, and trisyllables used in word-recognition protocols. Purpose This study aimed to establish the psychometric characteristics of common Spanish monosyllabic, bisyllabic, and trisyllabic words for potential use in word-recognition procedures. Research Design Prospective descriptive study. Study Sample Eighteen adult Puerto Ricans (M = 25.6 years) with normal hearing [M = 7.8-dB hearing level (HL) pure-tone average] were recruited for two experiments. Data Collection and Analyses A digital recording of 575 Spanish words was created (139 monosyllables, 359 bisyllables, and 77 trisyllables), incorporating materials from a variety of Spanish word-recognition lists. Experiment 1 (n = 6) used 25 randomly selected words from each of the three syllabic categories to estimate the presentation level ranges needed to obtain recognition performances over the 10 to 90% range. In Experiment 2 (n = 12) the 575 words were presented over five 1-hour sessions using presentation levels from 0- to 30-dB HL in 5-dB steps (monosyllables), 0- to 25-dB HL in 5-dB steps (bisyllables), and −3- to 17-dB HL in 4-dB steps (trisyllables). The presentation order of both the words and the presentation levels were randomized for each listener. The functions for each listener and each word were fit with polynomial equations from which the 50% points and slopes at the 50% point were calculated. Results The mean 50% points and slopes at 50% were 8.9-dB HL, 4.0%/dB (monosyllables), 6.9-dB HL, 5.1%/dB (bisyllables), and 1.4-dB HL, 6.3%/dB (trisyllables). The Kruskal–Wallis test with Mann–Whitney U post-hoc analysis indicated that the mean 50% points and slopes at the 50% points of the individual word functions were significantly different among the syllabic categories. Although significant differences were observed among the syllabic categories, substantial overlap was noted in the individual word functions, indicating that the psychometric characteristics of the words were not dictated exclusively by the syllabic number. Influences associated with word difficulty, word familiarity, singular and plural form words, phonetic stress patterns, and gender word patterns also were evaluated. Conclusion The main finding was the direct relation between the number of syllables in a word and word-recognition performance. In general, words with more syllables were more easily recognized; there were, however, exceptions. The current data from young adults with normal hearing established the psychometric characteristics of the 575 Spanish words on which the formulation of word lists for both threshold and suprathreshold measures of word-recognition abilities in quiet and in noise and other word-recognition protocols can be based.


2002 ◽  
Vol 45 (3) ◽  
pp. 585-597 ◽  
Author(s):  
Sumiko Takayanagi ◽  
Donald D. Dirks ◽  
Anahita Moshfegh

Evidence suggests that word recognition depends on numerous talker-, listener-, and stimulus-related characteristics. The current study examined the effects of talker variability and lexical difficulty on spoken-word recognition among four groups of listeners: native listeners with normal hearing or hearing impairment (moderate sensorineural hearing loss) and non-native listeners with normal hearing or hearing impairment. The ability of listeners to accommodate trial-totrial variations in talkers' voice was assessed by comparing recognition scores for a single-talker condition to those obtained in a multiple-talker condition. Lexical difficulty was assessed by comparing word-recognition performance between lexically ‘easy’ and ‘hard’ words as determined by frequency of occurrence in language and the structural characteristics of similarity neighborhoods formalized in the Neighborhood Activation Model. An up-down adaptive procedure was used to determine the sound pressure level for 50% performance. Non-native listeners in both normal-hearing and hearing-impaired groups required greater intensity for equal intelligibility than the native normal-hearing and hearingimpaired listeners. Results, however, showed significant effects of talker variability and lexical difficulty for the four groups. Structural equation modeling demonstrated that an audibility factor accounts for 2–3 times more variance in performance than does a linguistic-familiarity factor. However, the linguistic-familiarity factor is also essential to the model fit. The results demonstrated effects of talker variability and lexical difficulty on word recognition for both native and nonnative listeners with normal or impaired hearing. The results indicate that linguistic and indexical factors should be considered in the development of speech-recognition tests.


1984 ◽  
Vol 27 (3) ◽  
pp. 378-386 ◽  
Author(s):  
Richard H. Wilson ◽  
John T. Arcos ◽  
Howard C. Jones

Consonant-vowel-consonant (CVC) monosyllabic words were segmented at the approximate phoneme boundaries and were presented to subjects with normal hearing in the following sequence: (a) the carrier phrase to both ears, (b) the initial consonant segment to one ear, (c) the vowel segment to the other ear, and (d) the final consonant segment to the ear that received the initial consonant. A computer technique, which is described in detail, was used to develop the test materials. The digital editing did not alter appreciably the spectral or temporal characteristics of the words. A series of four experiments produced a list of 50 words on which 10% correct word recognition was achieved by listeners with normal hearing when the vowel segment or the consonant segments of the words were presented monaurally in isolation. When the speech materials were presented binaurally—that is, the vowel segment in one ear and consonant segments in the other ear—word-recognition performance improved to 90% correct.


1981 ◽  
Vol 46 (4) ◽  
pp. 413-421 ◽  
Author(s):  
Richard H. Wilson ◽  
Janet E. Shanks ◽  
Therese M. Velde

Bilateral measurements of the aural acoustic-immittance characteristics of the middle-ear transmission systems of 48 subjects were made with an acoustic-admittance meter. The measurements, including static acoustic-immittance, acoustic-reflex thresholds, and acoustic-reflex growth functions, were made using a 220-Hz probe. The contralateral reflex data for three pure tones (500, 1000, and 2000 Hz) and for broadband noise were acquired in 2-dB steps at sound-pressure levels from 84–116 dB (tones) and 66–116 dB (noise) during ascending- and descending-intensity level runs. For all acoustic-immittance measurements, right ear and left ear comparisons were made and found not to be significantly different. The individual subject data then were expressed as the absolute differences between ears. In this manner normative inter-aural immittance differences were defined. The peak static immittance data were analyzed in terms of median inter-aural differences and upper 80% cut-off values. The 80% range for normal immittance values were smaller for a within subject versus an across subject comparison. For acoustic-reflex thresholds, a disparity between ears of >10 dB was suggested as indicative of an abnormality in the auditory mechanism. Finally, the reflex-growth data indicated mean inter-aural absolute differences that ranged to .040–.043 acoustic mmhos (300–400 acoustic ohms) at the higher reflex activator sound-pressure levels.


1990 ◽  
Vol 55 (4) ◽  
pp. 771-778 ◽  
Author(s):  
Richard H. Wilson ◽  
Carol A. Zizz ◽  
Janet E. Shanks ◽  
G. Donald Causey

Two descriptive experiments were performed on a version of the Northwestern University Auditory Test No. 6 (NU No. 6) recorded by a female speaker that is included on an audio compact disc recently produced by the Department of Veterans Affairs. In Experiment 1, normative psychometric functions for the female speaker version of the NU No. 6 materials were established on 24 young adults for three monaural listening conditions (in quiet, in 60-dB SPL broadband noise, and in 60-dB SPL competing message). The 60-dB SPL broadband noise shifted the psychometric function for the NU No. 6 words 33 dB, whereas the 60-dB SPL competing message shifted the function only 18–22 dB. In contrast to the slopes of the quiet and noise conditions (4.5%/dB), the slope of the competing message function was more gradual (3.5%/dB). In Experiment 2, comparisons between the psychometric functions for the female and the original male speaker versions of NU No. 6 in quiet and in broadband noise were made on 8 young adults. In comparison to the psychometric functions for the male speaker version of NU No. 6, the functions for the female speaker version of NU No. 6 were displaced between the 10–90% correct points to higher sound-pressure levels by 10–13 dB in quiet and by 12–16 dB in noise. The difference in performance on the two versions of NU No. 6 is attributed to spectral differences between the two sets of materials that produced a calibration anomaly.


2003 ◽  
Vol 14 (09) ◽  
pp. 453-470 ◽  
Author(s):  
Richard H. Wilson

A simple word-recognition task in multitalker babble for clinic use was developed in the course of four experiments involving listeners with normal hearing and listeners with hearing loss. In Experiments 1 and 2, psychometric functions for the individual NU No. 6 words from Lists 2, 3, and 4 were obtained with each word in a unique segment of multitalker babble. The test paradigm that emerged involved ten words at each of seven signal-to-babble ratios (S/B) from 0 to 24 dB. Experiment 3 examined the effect that babble presentation level (70, 80, and 90 dB SPL) had on recognition performance in babble, whereas Experiment 4 studied the effect that monaural and binaural listening had on recognition performance. For listeners with normal hearing, the 90th percentile was 6 dB S/B. In comparison to the listeners with normal hearing, the 50% correct points on the functions for listeners with hearing loss were at 5 to 15 dB higher signal-to-babble ratios.


Sign in / Sign up

Export Citation Format

Share Document