Nitrite-derived nitric oxide: a possible mediator of ‘acidic-metabolic’ vasodilation

2001 ◽  
Vol 171 (1) ◽  
pp. 9-16 ◽  
Author(s):  
A. Modin ◽  
H. Björne ◽  
M. Herulf ◽  
K. Alving ◽  
E. Weitzberg ◽  
...  
2001 ◽  
Vol 171 (1) ◽  
pp. 9-16 ◽  
Author(s):  
A. Modin ◽  
H. Bjorne ◽  
M. Herulf ◽  
K. Alving ◽  
E. Weitzberg ◽  
...  

2004 ◽  
Vol 286 (3) ◽  
pp. H1114-H1123 ◽  
Author(s):  
Daphne Merkus ◽  
Birgit Houweling ◽  
Alisina Zarbanoui ◽  
Dirk J. Duncker

Prostacyclin and nitric oxide (NO) are produced by the endothelium in response to physical forces such as shear stress. Consequently, both NO and prostacyclin may increase during exercise and contribute to metabolic vasodilation. Conversely, NO has been hypothesized to inhibit prostacyclin production. We therefore investigated the effect of cyclooxygenase (COX) inhibition on exercise-induced vasodilation of the porcine systemic, pulmonary, and coronary beds before and after inhibition of NO production. Swine were studied at rest and during treadmill exercise at 1–5 km/h, before and after COX inhibition with indomethacin (10 mg/kg iv), and in the absence and presence of NO synthase inhibition with Nω-nitro-l-arginine (l-NNA; 20 mg/kg iv). COX inhibition produced systemic vasoconstriction at rest, which waned during exercise. The systemic vasoconstriction by COX inhibition was enhanced after l-NNA, particularly at rest. In the coronary circulation, COX inhibition also resulted in vasoconstriction at rest and during exercise. However, vasoconstriction was not modified by pretreatment with l-NNA. In contrast, COX inhibition had no effect on the pulmonary circulation, either at rest or during exercise. Moreover, a prostanoid influence in the pulmonary circulation could not be detected after l-NNA. In conclusion, endogenous prostanoids contribute importantly to systemic and coronary tone in awake swine at rest but are not mandatory for exercise-induced vasodilation in these beds. Endogenous prostanoids are not mandatory for the regulation of pulmonary resistance vessel tone. Finally, NO blunts the contribution of prostanoids to vascular tone regulation in the systemic but not in the coronary and pulmonary beds.


Author(s):  
Chi-Ming Wei ◽  
Margarita Bracamonte ◽  
Shi-Wen Jiang ◽  
Richard C. Daly ◽  
Christopher G.A. McGregor ◽  
...  

Nitric oxide (NO) is a potent endothelium-derived relaxing factor which also may modulate cardiomyocyte inotropism and growth via increasing cGMP. While endothelial nitric oxide synthase (eNOS) isoforms have been detected in non-human mammalian tissues, expression and localization of eNOS in the normal and failing human myocardium are poorly defined. Therefore, the present study was designed to investigate eNOS in human cardiac tissues in the presence and absence of congestive heart failure (CHF).Normal and failing atrial tissue were obtained from six cardiac donors and six end-stage heart failure patients undergoing primary cardiac transplantation. ENOS protein expression and localization was investigated utilizing Western blot analysis and immunohistochemical staining with the polyclonal rabbit antibody to eNOS (Transduction Laboratories, Lexington, Kentucky).


2001 ◽  
Vol 28 (5-6) ◽  
pp. 459-462
Author(s):  
Pini Orbach ◽  
Charles E Wood ◽  
Maureen Keller-Wood
Keyword(s):  

2001 ◽  
Vol 120 (5) ◽  
pp. A684-A684
Author(s):  
I DANIELS ◽  
I MURRAY ◽  
W GODDARD ◽  
R LONG

Sign in / Sign up

Export Citation Format

Share Document