Interaction between prostanoids and nitric oxide in regulation of systemic, pulmonary, and coronary vascular tone in exercising swine

2004 ◽  
Vol 286 (3) ◽  
pp. H1114-H1123 ◽  
Author(s):  
Daphne Merkus ◽  
Birgit Houweling ◽  
Alisina Zarbanoui ◽  
Dirk J. Duncker

Prostacyclin and nitric oxide (NO) are produced by the endothelium in response to physical forces such as shear stress. Consequently, both NO and prostacyclin may increase during exercise and contribute to metabolic vasodilation. Conversely, NO has been hypothesized to inhibit prostacyclin production. We therefore investigated the effect of cyclooxygenase (COX) inhibition on exercise-induced vasodilation of the porcine systemic, pulmonary, and coronary beds before and after inhibition of NO production. Swine were studied at rest and during treadmill exercise at 1–5 km/h, before and after COX inhibition with indomethacin (10 mg/kg iv), and in the absence and presence of NO synthase inhibition with Nω-nitro-l-arginine (l-NNA; 20 mg/kg iv). COX inhibition produced systemic vasoconstriction at rest, which waned during exercise. The systemic vasoconstriction by COX inhibition was enhanced after l-NNA, particularly at rest. In the coronary circulation, COX inhibition also resulted in vasoconstriction at rest and during exercise. However, vasoconstriction was not modified by pretreatment with l-NNA. In contrast, COX inhibition had no effect on the pulmonary circulation, either at rest or during exercise. Moreover, a prostanoid influence in the pulmonary circulation could not be detected after l-NNA. In conclusion, endogenous prostanoids contribute importantly to systemic and coronary tone in awake swine at rest but are not mandatory for exercise-induced vasodilation in these beds. Endogenous prostanoids are not mandatory for the regulation of pulmonary resistance vessel tone. Finally, NO blunts the contribution of prostanoids to vascular tone regulation in the systemic but not in the coronary and pulmonary beds.

2007 ◽  
Vol 293 (5) ◽  
pp. L1261-L1270 ◽  
Author(s):  
Louis G. Chicoine ◽  
Michael L. Paffett ◽  
Mark R. Girton ◽  
Matthew J. Metropoulus ◽  
Mandar S. Joshi ◽  
...  

Nitric oxide (NO) is an important regulator of vasomotor tone in the pulmonary circulation. We tested the hypothesis that the role NO plays in regulating vascular tone changes during early postnatal development. Isolated, perfused lungs from 7- and 14-day-old Sprague-Dawley rats were studied. Baseline total pulmonary vascular resistance (PVR) was not different between age groups. The addition of KCl to the perfusate caused a concentration-dependent increase in PVR that did not differ between age groups. However, the nitric oxide synthase (NOS) inhibitor Nω-nitro-l-arginine augmented the K+-induced increase in PVR in both groups, and the effect was greater in lungs from 14-day-old rats vs. 7-day-old rats. Lung levels of total endothelial, inducible, and neuronal NOS proteins were not different between groups; however, the production rate of exhaled NO was greater in lungs from 14-day-old rats compared with those of 7-day-old rats. Vasodilation to 0.1 μM of the NO donor spermine NONOate was greater in 14-day lungs than in 7-day lungs, and lung levels of both soluble guanylyl cyclase and cGMP were greater at 14 days than at 7 days. Vasodilation to 100 μM of the cGMP analog 8-(4-chlorophenylthio)guanosine-3′,5′-cyclic monophosphate was greater in 7-day lungs than in 14-day lungs. Our results demonstrate that the pulmonary vascular bed depends more on NO production to modulate vascular tone at 14 days than at 7 days of age. The observed differences in NO sensitivity may be due to maturational increases in soluble guanylyl cyclase protein levels.


1997 ◽  
Vol 272 (3) ◽  
pp. G507-G514 ◽  
Author(s):  
M. P. Macedo ◽  
W. W. Lautt

Our objective was to determine the vasodilator effect of adenosine and isoproterenol on the hepatic artery (HA) and superior mesenteric artery (SMA) before and after blockade of nitric oxide (NO) production to evaluate the possibility of organ specificity. Vascular circuits supplied blood flow to the liver or intestine in cats under pentobarbital sodium anesthesia. The NO synthase (NOS) antagonist N(G)-nitro-L-arginine methyl ester (L-NAME; 2.5 mg/kg iv) increased arterial pressure from 106.4 +/- 7.6 to 141.4 +/- 8.1 mmHg and raised basal vascular tone in the SMA but not in the HA. The NOS substrate L-arginine (75 mg/kg) reversed these effects. The decrease in perfusion pressure in response to adenosine was 51.7 +/- 2.9, 135.2 +/- 6.1, and 16.7 +/- 2.4 mmHg, respectively, for control and after L-NAME and L-arginine. Isoproterenol was also potentiated in the SMA. Adenosine and isoproterenol were not potentiated in the HA by L-NAME. Potentiation did not occur when HA or SMA basal tone was elevated by norepinephrine. In conclusion, L-NAME increased basal tone for the SMA and potentiated the dilation induced by adenosine and isoproterenol in the SMA but not in the HA. This study provides evidence that there is a highly organ-specific compensatory mechanism in which the absence of NO promotes potentiation of other vasodilators.


2001 ◽  
Vol 281 (5) ◽  
pp. R1624-R1632 ◽  
Author(s):  
Virginia L. Brooks ◽  
Kathy A. Clow ◽  
Lisa S. Welch ◽  
George D. Giraud

Pregnancy produces marked systemic vasodilation, but the mechanism is unknown. Experiments were performed in conscious rabbits to test the hypotheses that increased nitric oxide (NO) production contributes to the increased vascular conductance, but that the contribution varies among vascular beds. Rabbits were instrumented with aortic and vena caval catheters and ultrasonic flow probes implanted around the ascending aorta, superior mesenteric artery, terminal aorta, and/or a femoral artery. Hemodynamic responses to intravenous injection of N ω-nitro-l-arginine (l-NA; 20 mg/kg or increasing doses of 2, 5, 10, 15, and 20 mg/kg) were determined in rabbits first before pregnancy (NP) and then at the end of gestation (P). l-NA produced similar increases in arterial pressure between groups, but the following responses were larger ( P < 0.05) when the rabbits were pregnant: 1) decreases in total peripheral conductance [−3.7 ± 0.3 (NP), −5.0 ± 0.5 (P) ml · min−1 · mmHg−1], 2) decreases in mesenteric conductance [−0.47 ± 0.05 (NP), −0.63 ± 0.07 (P) ml · min−1 · mmHg−1], 3) decreases in terminal aortic conductance [−0.43 ± 0.05 (NP), −0.95 ± 0.19 ml · min−1 · mmHg−1 (P)], and 4) decreases in heart rate [−41 ± 4 (NP), −62 ± 5 beats/min (P)]. Nevertheless, total peripheral and terminal aortic conductances remained elevated in the pregnant rabbits ( P < 0.05) after l-NA. Furthermore, decreases in cardiac output and femoral conductance were not different between the reproductive states. We conclude that the contribution of NO to vascular tone increases during pregnancy, but only in some vascular beds. Moreover, the data support a role for NO in the pregnancy-induced increase in basal heart rate. Finally, unknown factors in addition to NO must also underlie the basal vasodilation observed during pregnancy.


1995 ◽  
Vol 269 (2) ◽  
pp. C519-C523 ◽  
Author(s):  
J. M. Li ◽  
R. A. Fenton ◽  
B. S. Cutler ◽  
J. G. Dobson

Adenosine per se is a potent vasodilator of vascular smooth muscle. Endothelial cells modulate vascular tone via the release of nitric oxide (NO), which also elicits vasodilation. This study was undertaken to determine whether adenosine could directly stimulate endothelial cells to enhance NO production, which could subsequently reduce vascular tone. NO production was evaluated in porcine carotid artery endothelial cells (PCAEC) and human saphenous vein endothelial cells (HSVEC) seeded on multiwell plates, grown to confluence, and treated with adenosine for 1 h. The bathing medium was collected, and the NO production was determined as reflected by the formation of NO2- and NO3-. NO production by PCAEC was significantly increased by adenosine in a dose-dependent manner, whereas there was only an insignificant tendency for an increase by HSVEC. The addition of the NO synthase competitive inhibitor, NG-monomethyl-L-arginine (NMMA), or the adenosine receptor antagonist, theophylline, prevented the increase in NO production by adenosine. The results suggest that adenosine stimulates, by a receptor-mediated mechanism, the production of NO by arterial, but not by venous, endothelial cells.


2005 ◽  
Vol 289 (6) ◽  
pp. L1083-L1093 ◽  
Author(s):  
C. M. Littler ◽  
C. A. Wehling ◽  
M. J. Wick ◽  
K. A. Fagan ◽  
C. D. Cool ◽  
...  

Loss of PKC-ε limits the magnitude of acute hypoxic pulmonary vasoconstriction (HPV) in the mouse. Therefore, we hypothesized that loss of PKC-ε would decrease the contractile and/or structural response of the murine pulmonary circulation to chronic hypoxia (Hx). However, the pattern of lung vascular responses to chronic Hx may or may not be predicted by the acute HPV response. Adult PKC-ε wild-type (PKC-ε+/+), heterozygous null, and homozygous null (PKC-ε−/−) mice were exposed to normoxia or Hx for 5 wk. PKC-ε−/− mice actually had a greater increase in right ventricular (RV) systolic pressure, RV mass, and hematocrit in response to chronic Hx than PKC-ε+/+ mice. In contrast to the augmented PA pressure and RV hypertrophy, pulmonary vascular remodeling was increased less than expected (i.e., equal to PKC-ε+/+ mice) in both the proximal and distal PKC-ε−/− pulmonary vasculature. The contribution of increased vascular tone to this pulmonary hypertension (PHTN) was assessed by measuring the acute vasodilator response to nitric oxide (NO). Acute inhalation of NO reversed the increased PA pressure in hypoxic PKC-ε−/− mice, implying that the exaggerated PHTN may be due to a relative deficiency in nitric oxide synthase (NOS). Despite the higher PA pressure, chronic Hx stimulated less of an increase in lung endothelial (e) and inducible (i) NOS expression in PKC-ε−/− than PKC-ε+/+ mice. In contrast, expression of nNOS in PKC-ε+/+ mice decreased in response to chronic Hx, while lung levels in PKC-ε−/− mice remained unchanged. In summary, loss of PKC-ε results in increased vascular tone, but not pulmonary vascular remodeling in response to chronic Hx. Blunting of Hx-induced eNOS and iNOS expression may contribute to the increased vascular tone. PKC-ε appears to be an important signaling intermediate in the hypoxic regulation of each NOS isoform.


2012 ◽  
Vol 20 ◽  
pp. 61-67 ◽  
Author(s):  
Amedea B. Seabra ◽  
Priscyla D. Marcato ◽  
Larissa B. de Paula ◽  
Nelson Durán

Nitric oxide (NO) is involved in several physiological processes, such as the control of vascular tone, the inhibition of platelet aggregation, smooth muscle cell replication, immune response and neuronal communication. Several pathologies have been associated to dysfunctions in the endogenous NO production. Thus, there is a great interest in the development of NO-releasing drugs and in matrices which are able to stabilize and release NO locally in different tissues. In this scenario, the preparation of NO-releasing nanomaterials, such as dendrimers, liposomes, metallic, silica, and polymeric nanoparticles, zeolites and metal organic frameworks, is a promising strategy for delivering NO in diverse applications, as discussed in this work.


2014 ◽  
Vol 306 (5) ◽  
pp. F542-F550 ◽  
Author(s):  
Kevin L. Gordish ◽  
William H. Beierwaltes

Resveratrol is suggested to have beneficial cardiovascular and renoprotective effects. Resveratrol increases endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) synthesis. We hypothesized resveratrol acts as an acute renal vasodilator, mediated through increased NO production and scavenging of reactive oxygen species (ROS). In anesthetized rats, we found 5.0 mg/kg body weight (bw) of resveratrol increased renal blood flow (RBF) by 8% [from 6.98 ± 0.42 to 7.54 ± 0.17 ml·min−1·gram of kidney weight−1 (gkw); n = 8; P < 0.002] and decreased renal vascular resistance (RVR) by 18% from 15.00 ± 1.65 to 12.32 ± 1.20 arbitrary resistance units (ARU; P < 0.002). To test the participation of NO, we administered 5.0 mg/kg bw resveratrol before and after 10 mg/kg bw of the NOS inhibitor N-nitro-l-arginine methyl ester (l-NAME). l-NAME reduced the increase in RBF to resveratrol by 54% (from 0.59 ± 0.05 to 0.27 ± 0.06 ml·min−1·gkw−1; n = 10; P < 0.001). To test the participation of ROS, we gave 5.0 mg/kg bw resveratrol before and after 1 mg/kg bw tempol, a superoxide dismutase mimetic. Resveratrol increased RBF 7.6% (from 5.91 ± 0.32 to 6.36 ± 0.12 ml·min−1·gkw−1; n = 7; P < 0.001) and decreased RVR 19% (from 18.83 ± 1.37 to 15.27 ± 1.37 ARU). Tempol blocked resveratrol-induced increase in RBF (from 0.45 ± 0.12 to 0.10 ± 0.05 ml·min−1·gkw−1; n = 7; P < 0.03) and the decrease in RVR posttempol was 44% of the control response (3.56 ± 0.34 vs. 1.57 ± 0.21 ARU; n = 7; P < 0.006). We also tested the role of endothelium-derived prostanoids. Two days of 10 mg/kg bw indomethacin pretreatment did not alter basal blood pressure or RBF. Resveratrol-induced vasodilation remained unaffected. We conclude intravenous resveratrol acts as an acute renal vasodilator, partially mediated by increased NO production/NO bioavailability and superoxide scavenging but not by inducing vasodilatory cyclooxygenase products.


Author(s):  
Manu Kupani ◽  
Smriti Sharma ◽  
Rajeev Kumar Pandey ◽  
Rajiv Kumar ◽  
Shyam Sundar ◽  
...  

Nitric oxide (NO) is an anti-microbial effector of the innate immune system which plays major role in non-specific killing of various pathogens including protozoan parasites. However, due to subversion of the host’s immune processes by pathogens, suboptimal production of NO is frequently found in many infection models. Previous studies have shown suppressed NO production during Leishmania donovani infection, the causative agent of visceral leishmaniasis (VL). Availability of L-Arginine, a semi-essential amino acid is required for inducible nitric oxide synthase (iNOS) mediated NO production. However, arginase is another enzyme, which if expressed concomitantly, may strongly compete for L-Arginine, and suppress NO production by iNOS. In the present study, plasma nitrite and arginase levels were measured in VL patients before and after successful drug treatment, endemic and non-endemic healthy donors. We observed significantly lower NO levels in the plasma of VL patients as compared to endemic controls, which improved significantly post-treatment. Significantly elevated arginase activity was also observed in the plasma of VL patients, which may be associated with NO deficiency. VL patients also showed significantly higher levels of IL-10 and TGF-β, which are known to regulate expression of arginase in various immune cells. In vitro studies with human peripheral blood mononuclear cells (PBMCs) further corroborated the role of IL-10 and TGF-β in arginase mediated suppression of NO production.


1999 ◽  
Vol 276 (2) ◽  
pp. H663-H670 ◽  
Author(s):  
Stephen J. Duffy ◽  
Gishel New ◽  
Binh T. Tran ◽  
Richard W. Harper ◽  
Ian T. Meredith

Although many factors are thought to contribute to the regulation of metabolic vasodilation in skeletal muscle vasculature, recent interest has focused on the role of the endothelium. We examined the relative roles of nitric oxide (NO) and of vasodilator prostanoids in the control of metabolically induced functional hyperemia in the forearm of humans. In 43 healthy volunteers [24 ± 5 (SD) yr] we assessed resting and functional hyperemic blood flow (FHBF) in response to 2 min of isotonic forearm exercise before and after inhibition of NO and/or vasodilator prostanoid production with intra-arterial N G-monomethyl-l-arginine (l-NMMA, 2 mg/min) and aspirin (ASA, 3 mg/min), respectively. Blood flow was measured using venous occlusion plethysmography.l-NMMA and ASA decreased resting forearm blood flow by 42% ( P < 0.0001) and 23% ( P < 0.0001), respectively, whereas infusion of ASA followed byl-NMMA reduced flow by a further 24% ( P < 0.05).l-NMMA reduced peak FHBF by 18% [from 13.9 ± 1.0 to 11.4 ± 1.1 (SE) ml ⋅ 100 ml forearm−1 ⋅ min−1, P = 0.003] and the volume “repaid” after 1 and 5 min by 25% (8.9 ± 0.7 vs. 6.7 ± 0.7 ml/100 ml, P < 0.0001) and 37% (26.6 ± 1.8 vs. 16.8 ± 1.6 ml/100 ml, P < 0.0001). ASA similarly reduced peak FHBF by 19% (from 14.5 ± 1.1 to 11.8 ± 0.9 ⋅ 100 ml forearm−1 ⋅ min−1, P < 0.001) and the volume repaid after 1 and 5 min by 14% (7.5 ± 0.6 vs. 6.4 ± 0.6 ml/100 ml, P = 0.0001) and 20% (21.2 ± 1.5 vs. 16.9 ± 1.5 ml/100 ml, P < 0.0001), respectively. The coinfusion of ASA andl-NMMA did not decrease FHBF to a greater extent than either agent alone. These data suggest that endothelium-derived NO and vasodilator prostanoids contribute to resting blood flow and metabolic vasodilation in skeletal muscle vasculature in healthy humans. Although these vasodilator mechanisms operate in parallel in exercise-induced hyperemia, they appear not to be additive. Other mechanisms must also be operative in metabolic vasodilation.


2005 ◽  
Vol 288 (1) ◽  
pp. H89-H95 ◽  
Author(s):  
Brett G. Zani ◽  
H. Glenn Bohlen

NaCl hyperosmolarity increases intestinal blood flow during food absorption due in large part to increased NO production. We hypothesized that in vivo, sodium ions enter endothelial cells during NaCl hyperosmolarity as the first step to stimulate an increase in intestinal endothelial NO production. Perivascular NO concentration ([NO]) and blood flow were determined in the in vivo rat intestinal microvasculature at rest and under hyperosmotic conditions, 330 and 380 mosM, respectively, before and after application of bumetanide (Na+-K+-2Cl− cotransporter inhibitor) or amiloride (Na+/H+ exchange channel inhibitor). Suppressing amiloride-sensitive Na+/H+ exchange channels diminished hypertonicity-linked increases in vascular [NO], whereas blockade of Na+-K+-2Cl− channels greatly suppressed increases in vascular [NO] and intestinal blood flow. In additional experiments we examined the effect of sodium ion entry into endothelial cells. We proposed that the Na+/Ca2+ exchanger extrudes Na+ in exchange for Ca2+, thereby leading to the calcium-dependent activation of endothelial nitric oxide synthase (eNOS). We blocked the activity of the Na+/Ca2+ exchanger during 360 mosM NaCl hyperosmolarity with KB-R7943; complete blockade of increased vascular [NO] and intestinal blood flow to hyperosmolarity occurred. These results indicate that during NaCl hyperosmolarity, sodium ions enter endothelial cells predominantly through Na+-K+-2Cl− channels. The Na+/Ca2+ exchanger then extrudes Na+ and increases endothelial Ca2+. The increase in endothelial Ca2+ causes an increase in eNOS activity, and the resultant increase in NO increases intestinal arteriolar diameter and blood flow during NaCl hyperosmolarity. This appears to be the major mechanism by which intestinal nutrient absorption is coupled to increased blood flow.


Sign in / Sign up

Export Citation Format

Share Document