scholarly journals Age-related accumulation of Ig VH gene somatic mutations in peripheral B cells from aged humans

2003 ◽  
Vol 133 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Y. CHONG ◽  
H. IKEMATSU ◽  
K. YAMAJI ◽  
M. NISHIMURA ◽  
S. KASHIWAGI ◽  
...  
Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2408-2408
Author(s):  
Christopher B. Yohn ◽  
Charles P. Van Beveren ◽  
Xi Y. Mu ◽  
Peter Shier ◽  
Gregg J. Silverman ◽  
...  

Abstract Background: Antibody diversity is generated by recombination of individual immunoglobulin (Ig) gene segments and subsequent somatic diversification driven by antigen recognition. In the repertoire of expressed B cell receptors (BCR) among normal peripheral B cells, variable heavy (VH) gene segments are not equally represented. The ratio of kappa to lambda light chain usage is also skewed; the normal κ/λ is 1.5. Investigation of the BCR repertoire may provide clues to the genesis of B cell malignancies, as suggested in chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL). BCR V gene identification during the production of recombinant antibodies used in our ongoing PhII and PhIII FavId® (idiotype/KLH) immunotherapy studies has enabled us to analyze V gene usage from 475 B cell follicular lymphoma (FL) tissue samples. This study reports the results of VH gene and κ/λ gene expression in this FL sample collection. Methods: Ig heavy chain (HC) and light chain (LC) isotypes from B cell FL samples were identified by flow cytometry. VH and VL regions were sequenced from gene specific cDNA libraries prepared from these samples. VH gene usage and κ/λ ratios were compared to frequencies determined for normal peripheral B cells isolated from six healthy volunteers as well as published reports for normal peripheral B cells and other B cell malignancies. Results: Compared to VH gene family usage determined for normal B cells, VH3 usage is higher (68% vs. 42%), VH1 usage is lower (7.8% vs. 22%) and VH4 usage is equivalent (22% vs. 26%) in our cohort of FL patients while VH2, 5, 6 and 7 are infrequently used in both populations. Usage of the VH3 genes within FL derived sequences also depends upon isotype, in that this gene family is preferentially associated with the IgM HC isotype relative to IgG (76% and 57% respectively). Additionally, the combined usage of the specific genes VH3-23 and VH3-48 in our patient collection accounts for over 29% of all VH genes - compared to 9% among normal B cells. These VH gene usages also differ from reports of VH gene expression among CLL and MCL patients. With respect to LC usage, VH3 isolates are associated with a normal κ/λ ratio of 1.6 while VH4 gene isolates are preferentially associated with λ light chains with a κ/λ ratio of 0.9. Finally, FL B cells expressing the IgM HC isotype preferentially co-express κ light chains (κ/λ ratio of 2.4) while IgG expressing cells preferentially utilize λ chains (κ/λ ratio of 0.6). Conclusions: Non-random V gene and LC expression among patients with FL is noted. These distortions in Ig gene expression suggest that lymphomagenesis in FL may be associated with B cell stimulation by common antigens. A program to investigate the epitopes recognized by FL derived BCRs via binding of recombinant FL derived antibodies to protein arrays containing common auto-antigens is currently underway.


1991 ◽  
Vol 173 (6) ◽  
pp. 1357-1371 ◽  
Author(s):  
H Gu ◽  
D Tarlinton ◽  
W Müller ◽  
K Rajewsky ◽  
I Förster

Using amplified cDNA and genomic libraries, we have analyzed the VH gene repertoire of pre-B cells and various B cell subsets of conventional mice at the level of VH genes belonging to the J558 VH gene family. The sequence data were evaluated on the basis of a newly established list of 67 J558 VH genes that comprise approximately two-thirds of the J558 VH genes of the murine IgHb haplotype. The results of the analysis demonstrate that VH gene utilization in pre-B cells, although biased to some extent by B cell autonomous VH gene selection, scatters over the whole range of J558 VH genes present in the germline. In contrast, in mature, peripheral B cells comprising long-lived mu + delta high B cells as well as Ly-1 B cells, small overlapping sets of germline VH genes are dominantly expressed. The data indicate that the recruitment of newly generated B cells into the long-lived peripheral B cell pool is mediated through positive selection by internal and/or external antigens. Because of the absence of immunoglobulin class switching and somatic hypermutation, this process is different from the selection of memory B cells in T cell-dependent immune responses.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4107-4107
Author(s):  
Max Jan ◽  
Florian Scherer ◽  
David M. Kurtz ◽  
Aaron M Newman ◽  
Henning Stehr ◽  
...  

Abstract Background: Pre-leukemic hematopoietic stem cells (HSC) have been implicated in AML (Jan et al STM 2012) and also for several lymphoid leukemias including ALL, HCL, and CLL. Separately, relapse of ALL following CD19 CAR-T cell therapy has been associated with lymphomyeloid lineage switch. Finally, healthy persons with clonally expanded HSCs are at increased risk of hematologic malignancies including lymphomas, and in mouse DLBCL models we previously demonstrated the oncogenic sufficiency of BCL6 overexpression in HSC (Green et al 2014 Nat Comm). Nevertheless, the cellular origin of DLBCL in the majority of patients is not definitively known. We sought to investigate the presence of mutations found in DLBCL within matched HSCs. Methods: We deeply genotyped somatic mutations in diagnostic biopsy tissues of 16 patients with DLBCL using CAPP-Seq to a median sequencing depth of 1100x (Newman et al 2014 Nat Med; Scherer et al 2015 ASH). We then profiled each patient for evidence implicating HSCs using somatic mutation lineage tracing, in either direct or indirect fashion. For direct evaluation, we used highly purified, serially FACS-sorted HSCs from grossly uninvolved bone marrow (BM) (n=5; Fig 1a-b). For indirect assessment, we either profiled serial tumor biopsies (n=13), or interrogated sorted cells from terminally differentiated blood lineages (n=7), including peripheral CD3+ T cells, CD14+ Monocytes, and B cells expressing a light-chain discordant to that of tumor isotype. HSCs and differentiated lineages were then interrogated by direct genotyping, using 3 highly sensitive orthogonal quantitative methods, including Myd88 L265P droplet digital PCR (n=6), BCL6 translocation breakpoint qPCR (n=4), and DLBCL CAPP-Seq profiling of 268 genes (n=5). We used the theoretical limit of detection (LOD) genotyping performance for CAPP-Seq (0.001%, Newman et al 2016 Nat Biotech), and established analytical sensitivity of our custom MYD88 ddPCR via limiting dilution (~1%). These LODs met or exceeded the expected limit of sorting impurity by FACS (~1%). For 6 patients experiencing one or more DLBCL relapse, we deeply profiled 13 serial tumor biopsies by CAPP-Seq, and then assessed overlap in somatic mutations and VDJ sequences in biopsy pairs as additional indirect evidence implicating HSCs. Results: We obtained a median of ~2000 sorted HSCs and ~1700 sorted cells from differentiated lineages, and genotyped each population using one or more of the 3 direct genotyping methods described above. Three patients with sufficient cell numbers were profiled both by CAPP-Seq and either ddPCR (n=2) or qPCR (n=1). Surprisingly, we found no evidence implicating HSCs either directly or indirectly in any of the 16 patients, regardless of the assay employed or the cell types/lineages genotyped (e.g., Fig 1b). In 2 patients with MYD88 L265P mutations, we found evidence for MYD88+ B-cells with discordant light chains by ddPCR (~0.1%) potentially implicating common lymphoid precursors (CLPs), but found no evidence for similar involvement of T-cells or monocytes. In 6 DLBCL patients experiencing relapse, tumor pairs profiled by CAPP-Seq (median depth 957) shared 93% of somatic mutations (75-100%, Fig 1c). Such pairs invariably shared clonal IgH VDJ rearrangements (4/4, 100%), thus implicating a common progenitor arising in later stages of B-cell development, not HSCs. Conclusions: We find no evidence to implicate HSCs in the derivation of DLBCL. While formal demonstration of absence of pre-malignant HSCs in DLBCL would require overcoming practical and technical limitations (including number of available HSCs, sorting purity, and genotyping sensitivity), the pattern of shared somatic alterations at relapse makes this highly unlikely. We speculate that unlike lymphoid leukemias, the cell-of-origin for most DLBCLs reside later in B-lymphopoiesis, beyond CLPs. Figure. (a) HSC sorting from BM by FACS (b) Allele frequencies of mutations found by CAPP-Seq in an examplary DLBCL case (x-axis) compared to the same variants in HSCs (y-axis). (c) Phylogenetic trees of DLBCL patients experiencing relapse (n=6) with tumor pairs sequenced by CAPP-Seq. Shown are the evolutionary distances between (i) germline and common inferrable progenitor (CIP) illustrating the fraction of shared mutations between tumor pairs, and (ii) CIP and both diagnostic (tumor 1) and relapse tumors (tumor 2) indicating unique mutations to each tumor. Figure. (a) HSC sorting from BM by FACS (b) Allele frequencies of mutations found by CAPP-Seq in an examplary DLBCL case (x-axis) compared to the same variants in HSCs (y-axis). (c) Phylogenetic trees of DLBCL patients experiencing relapse (n=6) with tumor pairs sequenced by CAPP-Seq. Shown are the evolutionary distances between (i) germline and common inferrable progenitor (CIP) illustrating the fraction of shared mutations between tumor pairs, and (ii) CIP and both diagnostic (tumor 1) and relapse tumors (tumor 2) indicating unique mutations to each tumor. Disclosures Newman: Roche: Consultancy. Levy:Kite Pharma: Consultancy; Five Prime Therapeutics: Consultancy; Innate Pharma: Consultancy; Beigene: Consultancy; Corvus: Consultancy; Dynavax: Research Funding; Pharmacyclics: Research Funding. Diehn:Novartis: Consultancy; Quanticel Pharmaceuticals: Consultancy; Roche: Consultancy; Varian Medical Systems: Research Funding.


2019 ◽  
Vol 485 (3) ◽  
pp. 370-373
Author(s):  
Е. N. Ilina ◽  
E. V. Solopova ◽  
Т. К. Aliev ◽  
М. V. Larina ◽  
D. S. Balabashin ◽  
...  

We generated a novel human neutralizing human mAb RabD4 against rabies virus glycoprotein using in vitro stimulation human peripheral B cells produced from immunized donor. It was revealed that the human mAb RabD4 demonstrated high antigen-binding activity and virus-neutralizing activity in the FAVN test with the CVS-11 rabies virus.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1527-1527
Author(s):  
Sara Rodríguez ◽  
Cirino Botta ◽  
Jon Celay ◽  
Ibai Goicoechea ◽  
Maria J Garcia-Barchino ◽  
...  

Background: Although MYD88 L265P is highly frequent in WM, by itself is insufficient to explain disease progression since most cases with IgM MGUS also have mutated MYD88. In fact, the percentage of MYD88 L265P in CD19+ cells isolated from WM patients is typically <100%, which questions if this mutation initiates the formation of B-cell clones. Furthermore, a few WM patients have detectable MYD88 L265P in total bone marrow (BM) cells and not in CD19+ selected B cells, raising the possibility that other hematopoietic cells carry the MYD88 mutation. However, no one has investigated if the pathogenesis of WM is related to somatic mutations occurring at the hematopoietic stem cell level, similarly to what has been shown in CLL or hairy cell leukemia. Aim: Define the cellular origin of WM by comparing the genetic landscape of WM cells to that of CD34 progenitors, B cell precursors and residual normal B cells. Methods: We used multidimensional FACSorting to isolate a total of 43 cell subsets from BM aspirates of 8 WM patients: CD34+ progenitors, B cell precursors, residual normal B cells (if detectable), WM B cells, plasma cells (PCs) and T cells (germline control). Whole-exome sequencing (WES, mean depth 74x) was performed with the 10XGenomics Exome Solution for low DNA-input due to very low numbers of some cell types. We also performed single-cell RNA and B-cell receptor sequencing (scRNA/BCRseq) in total BM B cells and PCs (n=32,720) from 3 IgM MGUS and 2 WM patients. Accordingly, the clonotypic BCR detected in WM cells was unbiasedly investigated in all B cell maturation stages defined according to their molecular phenotype. In parallel, MYD88p.L252P (orthologous position of the human L265P mutation) transgenic mice were crossed with conditional Sca1Cre, Mb1Cre, and Cγ1Cre mice to selectively induce in vivo expression of MYD88 mutation in CD34 progenitors, B cell precursors and germinal center B cells, respectively. Upon immunization, mice from each cohort were necropsied at 5, 10 and 15 months of age and screened for the presence of hematological disease. Results: All 8 WM patients showed MYD88 L265P and 3 had mutated CXCR4. Notably, we found MYD88 L265P in B cell precursors from 1/8 cases and in residual normal B cells from 3/8 patients, which were confirmed by ASO-PCR. In addition, CXCR4 was simultaneously mutated in B cell precursors and WM B cells from one patient. Overall, CD34+ progenitors, B-cell precursors and residual normal B cells shared a median of 1 (range, 0-4; mean VAF, 0.16), 2 (range, 1-5; mean VAF, 0.14), and 4 (range, 1-13; mean VAF, 0.26) non-synonymous mutations with WM B cells. Some mutations were found all the way from CD34+ progenitors to WM B cells and PCs. Interestingly, concordance between the mutational landscape of WM B cells and PCs was <100% (median of 85%, range: 25%-100%), suggesting that not all WB B cells differentiate into PCs. A median of 7 (range, 2-19; mean VAF, 0.39) mutations were unique to WM B cells. Accordingly, many clonal mutations in WM B cells were undetectable in normal cells. Thus, the few somatic mutations observed in patients' lymphopoiesis could not result from contamination during FACSorting since in such cases, all clonal mutations would be detectable in normal cells. Of note, while somatic mutations were systematically detected in normal cells from all patients, no copy number alterations (CNA) present in WM cells were detectable in normal cells. scRNA/BCRseq unveiled that clonotypic cells were confined mostly within mature B cell and PC clusters in IgM MGUS, whereas a fraction of clonotypic cells from WM patients showed a transcriptional profile overlapping with that of B cell precursors. In mice, induced expression of mutated MYD88 led to a moderate increase in the number of B220+CD138+ plasmablasts and B220-CD138+ PCs in lymphoid tissues and BM, but no signs of clonality or hematological disease. Interestingly, such increment was more evident in mice with activation of mutated MYD88 in CD34+ progenitors and B-cell precursors vs mice with MYD88 L252P induced in germinal center B cells. Conclusions: We show for the first time that WM patients have somatic mutations, including MYD88 L265P and in CXCR4, at the B cell progenitor level. Taken together, this study suggests that in some patients, WM could develop from B cell clones carrying MYD88 L265P rather than it being the initiating event, and that other mutations or CNA are required for the expansion of B cells and PCs with the WM phenotype. Disclosures Roccaro: Janssen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Transcan2-ERANET: Research Funding; AstraZeneca: Research Funding; European Hematology Association: Research Funding; Transcan2-ERANET: Research Funding; Associazione Italiana per al Ricerca sul Cancro (AIRC): Research Funding; Associazione Italiana per al Ricerca sul Cancro (AIRC): Research Funding; European Hematology Association: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees; AstraZeneca: Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees. San-Miguel:Amgen, Bristol-Myers Squibb, Celgene, Janssen, MSD, Novartis, Roche, Sanofi, and Takeda: Consultancy, Honoraria. Paiva:Amgen, Bristol-Myers Squibb, Celgene, Janssen, Merck, Novartis, Roche, and Sanofi; unrestricted grants from Celgene, EngMab, Sanofi, and Takeda; and consultancy for Celgene, Janssen, and Sanofi: Consultancy, Honoraria, Research Funding, Speakers Bureau.


1997 ◽  
Vol 99 (10) ◽  
pp. 2488-2501 ◽  
Author(s):  
H P Brezinschek ◽  
S J Foster ◽  
R I Brezinschek ◽  
T Dörner ◽  
R Domiati-Saad ◽  
...  

2011 ◽  
Vol 140 (1) ◽  
pp. 8-17 ◽  
Author(s):  
Maria P. Karampetsou ◽  
Andrew P. Andonopoulos ◽  
Stamatis-Nick C. Liossis
Keyword(s):  
B Cells ◽  

Sign in / Sign up

Export Citation Format

Share Document