Role of the periplasmic domain of the Escherichia coli NarX sensor‐transmitter protein in nitrate‐dependent signal transduction and gene regulation

1996 ◽  
Vol 21 (5) ◽  
pp. 901-911 ◽  
Author(s):  
Ricardo Cavicchioli ◽  
Robin C. Chiang ◽  
Lisa V. Kalman ◽  
Robert P. Gunsalus
2007 ◽  
Vol 189 (20) ◽  
pp. 7273-7280 ◽  
Author(s):  
Dirk-Jan Scheffers ◽  
Carine Robichon ◽  
Gert Jan Haan ◽  
Tanneke den Blaauwen ◽  
Gregory Koningstein ◽  
...  

ABSTRACT The Escherichia coli cell division protein FtsQ is a central component of the divisome. FtsQ is a bitopic membrane protein with a large C-terminal periplasmic domain. In this work we investigated the role of the transmembrane segment (TMS) that anchors FtsQ in the cytoplasmic membrane. A set of TMS mutants was made and analyzed for the ability to complement an ftsQ mutant. Study of the various steps involved in FtsQ biogenesis revealed that one mutant (L29/32R;V38P) failed to functionally insert into the membrane, whereas another mutant (L29/32R) was correctly assembled and interacted with FtsB and FtsL but failed to localize efficiently to the cell division site. Our results indicate that the FtsQ TMS plays a role in FtsQ localization to the division site.


2001 ◽  
Vol 183 (10) ◽  
pp. 3076-3082 ◽  
Author(s):  
Francisca Reyes-Ramirez ◽  
Richard Little ◽  
Ray Dixon

ABSTRACT The redox-sensing flavoprotein NifL inhibits the activity of the nitrogen fixation (nif)-specific transcriptional activator NifA in Azotobacter vinelandii in response to molecular oxygen and fixed nitrogen. Although the mechanism whereby the A. vinelandii NifL-NifA system responds to fixed nitrogen in vivo is unknown, the glnK gene, which encodes a PII-like signal transduction protein, has been implicated in nitrogen control. However, the precise function of A. vinelandii glnK in this response is difficult to establish because of the essential nature of this gene. We have shown previously that A. vinelandii NifL is able to respond to fixed nitrogen to control NifA activity when expressed inEscherichia coli. In this study, we investigated the role of the E. coli PII-like signal transduction proteins in nitrogen control of the A. vinelandii NifL-NifA regulatory system in vivo. In contrast to recent findings with Klebsiella pneumoniae NifL, our results indicate that neither the E. coli PII nor GlnK protein is required to relieve inhibition byA. vinelandii NifL under nitrogen-limiting conditions. Moreover, disruption of both the E. coli glnB andntrC genes resulted in a complete loss of nitrogen regulation of NifA activity by NifL. We observe that glnB ntrC and glnB glnK ntrC mutant strains accumulate high levels of intracellular 2-oxoglutarate under conditions of nitrogen excess. These findings are in accord with our recent in vitro observations (R. Little, F. Reyes-Ramirez, Y. Zhang, W. Van Heeswijk, and R. Dixon, EMBO J. 19:6041–6050, 2000) and suggest a model in which nitrogen control of the A. vinelandii NifL-NifA system is achieved through the response to the level of 2-oxoglutarate and an interaction with PII-like proteins under conditions of nitrogen excess.


2007 ◽  
Vol 190 (3) ◽  
pp. 972-979 ◽  
Author(s):  
Xianxian Liu ◽  
Rebecca E. Parales

ABSTRACT Escherichia coli exhibits chemotactic responses to sugars, amino acids, and dipeptides, and the responses are mediated by methyl-accepting chemotaxis proteins (MCPs). Using capillary assays, we demonstrated that Escherichia coli RP437 is attracted to the pyrimidines thymine and uracil and the response was constitutively expressed under all tested growth conditions. All MCP mutants lacking the MCP Tap protein showed no response to pyrimidines, suggesting that Tap, which is known to mediate dipeptide chemotaxis, is required for pyrimidine chemotaxis. In order to confirm the role of Tap in pyrimidine chemotaxis, we constructed chimeric chemoreceptors (Tapsr and Tsrap), in which the periplasmic and cytoplasmic domains of Tap and Tsr were switched. When Tapsr and Tsrap were individually expressed in an E. coli strain lacking all four native MCPs, Tapsr mediated chemotaxis toward pyrimidines and dipeptides, but Tsrap did not complement the chemotaxis defect. The addition of the C-terminal 19 amino acids from Tsr to the C terminus of Tsrap resulted in a functional chemoreceptor that mediated chemotaxis to serine but not pyrimidines or dipeptides. These results indicate that the periplasmic domain of Tap is responsible for detecting pyrimidines and the Tsr signaling domain confers on Tapsr the ability to mediate efficient chemotaxis. A mutant lacking dipeptide binding protein (DBP) was wild type for pyrimidine taxis, indicating that DBP, which is the primary chemoreceptor for dipeptides, is not responsible for detecting pyrimidines. It is not yet known whether Tap detects pyrimidines directly or via an additional chemoreceptor protein.


Sign in / Sign up

Export Citation Format

Share Document