Effect of Tillage System and Fertilization on Physical Properties of Soil in the Seedbed and on Seedling Emergence of Winter Barley (Hordeum vulgare cv. Niki)

2000 ◽  
Vol 184 (4) ◽  
pp. 287 ◽  
Author(s):  
N. Sidiras
Author(s):  
L. Raus ◽  
G. Jitareanu

Optimal crop rooting soil physical conditions are a result of complex interactions between soil strength and oxygen and water supply to plant roots. Spatial/temporal variability in soil properties can be critical in the evaluation of the effects of tillage management practice on soil and crop parameters. In this paper tillage were evaluated for theirs effects on soil physical and hydrological properties. Tillage treatments were plough to 20 cm, plough to 30 cm, chisel and disc harrow applied to wheat in to been/ wheat/ maize rotation. The experiments have been conducted in the Didactic Station of the USAMV – Iasi, Ezăreni Farm, during the period between 2002-2004, on a cambic chernozem with 3,4 % humus and pH 7. Tillage system modify, at least temporarily, some of the physical properties of soil, such as soil bulk density, penetration resistance, soil porosity and soil structural stability. Hydraulic properties of the soil did not differ significantly. All the tillage operation was significantly different in their effects on soil properties.


Weed Science ◽  
1999 ◽  
Vol 47 (6) ◽  
pp. 712-719 ◽  
Author(s):  
Anne Légère ◽  
Yuguang Bai

The robustness of competitive attributes of cereals such as rapid and uniform seedling emergence, tillering, early biomass accumulation and canopy closure, and height advantage over weeds have not yet been tested under environmental conditions typical of no-till (NT) cropping systems. Our objective was to evaluate the effects or NT practices on growth and productivity ofAvena sativa, Triticum aestivum, Hordeum vulgare, and associated weeds. The experiment was conducted on a Kamouraska clay at La Pocatière, QC, in 1994, 1995, and 1996.Avena sativa, T. aestivum, andH. vulgarewere grown under tilled and NT practices. Cereal growth parameters were measured six (1994) or seven (1995) times between planting and the 11th week after planting but only once in 1996. Grain yields and yield components were determined at crop maturity.Avena sativaandH. vulgarepopulations were little affected by tillage, whereasT. aestivumpopulations were reduced by 16 to 20% in NT systems. Growth in height in NT systems was either similar or greater than in tilled systems in all three cereals. Cereal leaf area index (LAI) and biomass accumulation was also comparable between tillage systems, except forT. aestivumLAI in 1994, which was greater in tilled plots on two sampling dates. Response of annual dicots to tillage was inconsistent in all crops. Annual monocots dominated in some but not all NT systems. Perennial dicots dominated in NT systems, whereas perennial monocots were more abundant in tilled systems in all three cereals.Avena sativaandT. aestivumyields in NT plots were comparable or greater than in tilled plots, in spite of having either lower test weights (A. sativa) or lower 1,000-grain weights (T. aestivum). NTT. aestivumproductivity was maintained in spite of reduced plant establishment.Hordeum vulgareyields were also similar across tillage systems, except in 1995, when yields in tilled plots were greater than in NT plots. The height advantage observed for NTH. vulgaredid not result in improved yields. All three cereals, and particularlyA. sativa, appeared well suited to NT systems, despite the pressure provided by different weed groups, compared to tilled systems. However, results suggest that NT production of cereals could benefit from improved attention to perennial dicot control and crop seedling establishment, particularly forT. aestivum.


1997 ◽  
Vol 77 (4) ◽  
pp. 639-640 ◽  
Author(s):  
D. E. Falk ◽  
E. Reinbergs ◽  
G. Meatherall

OAC Elmira is a high-yielding, disease-resistant, hardy winter barley adapted to Southern Ontario. OAC Elmira has good winter hardiness and high hectoliter weight. It has better disease resistance than any of the check cultivars and long straw with a lax, nodding head. It was developed by the Ontario Ministry of Agriculture and Food through the Crop Science Department of the University of Guelph. Key words: Hordeum vulgare L., high yield, disease resistance, winter hardiness


2014 ◽  
Vol 38 (4) ◽  
pp. 1281-1292 ◽  
Author(s):  
Luis Alberto Lozano ◽  
Carlos Germán Soracco ◽  
Vicente S. Buda ◽  
Guillermo O. Sarli ◽  
Roberto Raúl Filgueira

The area under the no-tillage system (NT) has been increasing over the last few years. Some authors indicate that stabilization of soil physical properties is reached after some years under NT while other authors debate this. The objective of this study was to determine the effect of the last crop in the rotation sequence (1st year: maize, 2nd year: soybean, 3rd year: wheat/soybean) on soil pore configuration and hydraulic properties in two different soils (site 1: loam, site 2: sandy loam) from the Argentinean Pampas region under long-term NT treatments in order to determine if stabilization of soil physical properties is reached apart from a specific time in the crop sequence. In addition, we compared two procedures for evaluating water-conducting macroporosities, and evaluated the efficiency of the pedotransfer function ROSETTA in estimating the parameters of the van Genuchten-Mualem (VGM) model in these soils. Soil pore configuration and hydraulic properties were not stable and changed according to the crop sequence and the last crop grown in both sites. For both sites, saturated hydraulic conductivity, K0, water-conducting macroporosity, εma, and flow-weighted mean pore radius, R0ma, increased from the 1st to the 2nd year of the crop sequence, and this was attributed to the creation of water-conducting macropores by the maize roots. The VGM model adequately described the water retention curve (WRC) for these soils, but not the hydraulic conductivity (K) vs tension (h) curve. The ROSETTA function failed in the estimation of these parameters. In summary, mean values of K0 ranged from 0.74 to 3.88 cm h-1. In studies on NT effects on soil physical properties, the crop effect must be considered.


Author(s):  
Camila Jorge Bernabé Ferreira ◽  
Cássio Antonio Tormena ◽  
Wagner Henrique Moreira ◽  
Lincoln Zotarelli ◽  
Edner Betioli Junior ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document