Effects Of Trilinolein On Superoxide Dismutase Activity And Mrna Levels In Aortic Smooth Muscle Cells

2000 ◽  
Vol 27 (12) ◽  
pp. 1002-1006 ◽  
Author(s):  
Paul Chan ◽  
Jun-Jen Chang ◽  
Fu-Chean Chen ◽  
Ming-Shun Wu ◽  
Brian Tomlinson ◽  
...  
Pharmacology ◽  
1999 ◽  
Vol 59 (5) ◽  
pp. 275-282 ◽  
Author(s):  
Wen-Pin Huang ◽  
Paul Chan ◽  
Yi-Jen Chen ◽  
Chi-Ming Chen ◽  
Shue-Sen Liao ◽  
...  

2001 ◽  
Vol 280 (6) ◽  
pp. C1555-C1560 ◽  
Author(s):  
Nancy Sevieux ◽  
Jawed Alam ◽  
Emel Songu-Mize

We previously demonstrated that protein expression of both α1- and α2-catalytic subunits of the Na+-K+-ATPase is elevated after a 2- to 4-day chronic cyclic stretch regimen in cultured aortic smooth muscle cells (ASMC). In the present study, we investigated whether cyclic stretch affects mRNA expression of the α-isoforms of the Na+-K+-ATPase. Using a stretch apparatus, rat ASMC were cyclically stretched 10 or 20% of their length for 1, 3, or 6 h. α-Isoform mRNA levels were measured using Northern analysis. A 3-h 10% stretch had no significant affect on mRNA expression for either isoform, but a 20% stretch increased mRNA of both isoforms approximately twofold. Whereas a 6-h 20% stretch increased α1 mRNA by 3.3-fold, α2 was not affected any further. Actinomycin D blocked the stretch-induced stimulation of mRNA expression of both α-subunits. In conclusion, cyclic stretch stimulates the mRNA expression of both α1- and α2-subunits of Na+-K+-ATPase. The sensitivity of the two genes to the degree and duration of stretch is different. The stretch-induced increase of mRNA may be a result of increased transcription.


2008 ◽  
Vol 295 (1) ◽  
pp. H163-H173 ◽  
Author(s):  
Daming Zhuang ◽  
Qinghua Pu ◽  
Bogdan Ceacareanu ◽  
Yingzi Chang ◽  
Madhulika Dixit ◽  
...  

Hyperinsulinemia plays a major role in the pathogenesis of vascular disease. Restenosis occurs at an accelerated rate in hyperinsulinemia and is dependent on increased vascular smooth muscle cell movement from media to neointima. PDGF plays a critical role in mediating neointima formation in models of vascular injury. We have reported that PDGF increases the levels of protein tyrosine phosphatase PTP1B and that PTP1B suppresses PDGF-induced motility in cultured cells and that it attenuates neointima formation in injured carotid arteries. Others have reported that insulin enhances the mitogenic and motogenic effects of PDGF in cultured smooth muscle cells and that hyperinsulinemia promotes vascular remodeling. In the present study, we tested the hypothesis that insulin amplifies PDGF-induced cell motility by suppressing the expression and function of PTP1B. We found that chronic but not acute treatment of cells with insulin enhances PDGF-induced motility in differentiated cultured primary rat aortic smooth muscle cells and that it suppresses PDGF-induced upregulation of PTP1B protein. Moreover, insulin suppresses PDGF-induced upregulation of PTP1B mRNA levels, PTP1B enzyme activity, and binding of PTP1B to the PDGF receptor-β, and it enhances PDGF-induced PDGF receptor phosphotyrosylation. Treatment with insulin induces time-dependent upregulation of phosphatidylinositol 3-kinase (PI3-kinase)-δ and activation of Akt, an enzyme downstream of PI3-kinase. Finally, inhibition of PI3-kinase activity, or its function, by pharmacological or genetic means rescues PTP1B activity in insulin-treated cells. These observations uncover novel mechanisms that explain how insulin amplifies the motogenic capacity of the pivotal growth factor PDGF.


2007 ◽  
Vol 35 (06) ◽  
pp. 1021-1035 ◽  
Author(s):  
Kar-Lok Wong ◽  
King-Chuen Wu ◽  
Rick Sai-Chuen Wu ◽  
Yu-Hsiang Chou ◽  
Tzu-Hurng Cheng ◽  
...  

Tetramethylpyrazine (TMP) is the major component extracted from the Chinese herb, Chuanxiong, which is widely used in China for the treatment of cardiovascular problems. The aims of this study were to examine whether TMP may alter angiotenisn II (Ang II)-induced proliferation and to identify the putative underlying signaling pathways in rat aortic smooth muscle cells. Cultured rat aortic smooth muscle cells were preincubated with TMP and then stimulated with Ang II, [3H]-thymidine incorporation and the ET-1 expression was examined. Ang II increased DNA synthesis which was inhibited by TMP (1-100 μM). TMP inhibited the Ang II-induced ET-1 mRNA levels and ET-1 secretion. TMP also inhibited Ang II-increased NAD(P)H oxidase activity, intracellular reactive oxygen species (ROS) levels, and the ERK phosphorylation. Furthermore, TMP and antioxidants such as Trolox and diphenylene iodonium decreased Ang II-induced ERK phosphorylation, and activator protein-1 reporter activity. In summary, we demonstrate for the first time that TMP inhibits Ang II-induced proliferation and ET-1, partially by interfering with the ERK pathway via attenuation of Ang II-increased NAD(P)H oxidase and ROS generation. Thus, this study delivers important new insight in the molecular pathways that may contribute to the proposed beneficial effects of TMP in cardiovascular disease.


2018 ◽  
Vol 88 (5-6) ◽  
pp. 309-318
Author(s):  
Hae Seong Song ◽  
Jung-Eun Kwon ◽  
Hyun Jin Baek ◽  
Chang Won Kim ◽  
Hyelin Jeon ◽  
...  

Abstract. Sorghum bicolor L. Moench is widely grown all over the world for food and feed. The effects of sorghum extracts on general inflammation have been previously studied, but its anti-vascular inflammatory effects are unknown. Therefore, this study investigated the anti-vascular inflammation effects of sorghum extract (SBE) and fermented extract of sorghum (fSBE) on human aortic smooth muscle cells (HASMCs). After the cytotoxicity test of the sorghum extract, a series of experiments were conducted. The inhibition effects of SBE and fSBE on the inflammatory response and adhesion molecule expression were measured using treatment with tumor necrosis factor-α (TNF-α), a crucial promoter for the development of atherosclerotic lesions, on HASMCs. After TNF-α (10 ng/mL) treatment for 2 h, then SBE and fSBE (100 and 200 μg/mL) were applied for 12h. Western blotting analysis showed that the expression of vascular cell adhesion molecule-1 (VCAM-1) (2.4-fold) and cyclooxygenase-2 (COX-2) (6.7-fold) decreased, and heme oxygenase-1 (HO-1) (3.5-fold) increased compared to the TNF-α control when treated with 200 μg/mL fSBE (P<0.05). In addition, the fSBE significantly increased the expression of HO-1 and significantly decreased the expression of VCAM-1 and COX-2 compared to the TNF-α control in mRNA level (P<0.05). These reasons of results might be due to the increased concentrations of procyanidin B1 (about 6-fold) and C1 (about 30-fold) produced through fermentation with Aspergillus oryzae NK for 48 h, at 37 °C. Overall, the results demonstrated that fSBE enhanced the inhibition of the inflammatory response and adherent molecule expression in HASMCs.


Sign in / Sign up

Export Citation Format

Share Document