scholarly journals Formation of new plasma membrane during the first cleavage cycle in the egg of Xenopus laevis: An immunocytological study

1997 ◽  
Vol 39 (6) ◽  
pp. 693-704 ◽  
Author(s):  
Christian Aimar
2013 ◽  
Vol 19 (5) ◽  
pp. 1358-1363 ◽  
Author(s):  
Massimo Santacroce ◽  
Federica Daniele ◽  
Andrea Cremona ◽  
Diletta Scaccabarozzi ◽  
Michela Castagna ◽  
...  

AbstractXenopus laevis oocytes are an interesting model for the study of many developmental mechanisms because of their dimensions and the ease with which they can be manipulated. In addition, they are widely employed systems for the expression and functional study of heterologous proteins, which can be expressed with high efficiency on their plasma membrane. Here we applied atomic force microscopy (AFM) to the study of the plasma membrane of X. laevis oocytes. In particular, we developed and optimized a new sample preparation protocol, based on the purification of plasma membranes by ultracentrifugation on a sucrose gradient, to perform a high-resolution AFM imaging of X. laevis oocyte plasma membrane in physiological-like conditions. Reproducible AFM topographs allowed visualization and dimensional characterization of membrane patches, whose height corresponds to a single lipid bilayer, as well as the presence of nanometer structures embedded in the plasma membrane and identified as native membrane proteins. The described method appears to be an applicable tool for performing high-resolution AFM imaging of X. laevis oocyte plasma membrane in a physiological-like environment, thus opening promising perspectives for studying in situ cloned membrane proteins of relevant biomedical/pharmacological interest expressed in this biological system.


1979 ◽  
Vol 37 (1) ◽  
pp. 59-67
Author(s):  
M. Geuskens ◽  
R. Tencer

Uncleaved fertilized eggs of Xenopus laevis treated with wheat germ agglutinin (WGA) have been pricked at the animal pole both inside and outside the regressed furrow region. The wounded cortex of both regions has been studied with the electron microscope and compared with the same region of wounded, untreated eggs. In all 3 cases, filaments are organized in an annular zone in the damaged cortex. When the surface is pricked outside the regressed furrow of WGA-treated embryos, bundles of microfilaments radiate from the ring and extend in deep folds which form a ‘star’ around the wound at the surface of the embryo. However, when the surface is pricked in the new membrane of the regressed furrow, filaments are intermingled with internalized portions of the plasma membrane. It is suggested that, when the surface is pricked outside the furrow region, more filaments are mobilized to counteract the tangential retraction of the membrane which has acquired more rigidity after WGA binding.


1999 ◽  
Vol 340 (3) ◽  
pp. 737 ◽  
Author(s):  
Yves MAULET ◽  
Régis C. LAMBERT ◽  
Serge MYKITA ◽  
Jerôme MOUTON ◽  
Maria PARTISANI ◽  
...  

1999 ◽  
Vol 113 (4) ◽  
pp. 507-524 ◽  
Author(s):  
Guido A. Zampighi ◽  
Donald D.F. Loo ◽  
Michael Kreman ◽  
Sepehr Eskandari ◽  
Ernest M. Wright

Electrophysiological and morphological methods were used to study connexin50 (Cx50) expressed in Xenopus laevis oocytes. Oocytes expressing Cx50 exhibited a new population of intramembrane particles (9.0 nm in diameter) in the plasma membrane. The particles represented hemichannels (connexin hexamers) because (a) their cross-sectional area could accommodate 24 ± 3 helices, (b) when their density reached 300–400/μm2, they formed complete channels (dodecamers) in single oocytes, and assembled into plaques, and (c) their appearance in the plasma membrane was associated with a whole-cell current, which was activated at low external Ca2+ concentration ([Ca2+]o), and was blocked by octanol and by intracellular acidification. The Cx50 hemichannel density was directly proportional to the magnitude of the Cx50 Ca2+-sensitive current. Measurements of hemichannel density and the Ca2+-sensitive current in the same oocytes suggested that at physiological [Ca2+]o (1–2 mM), hemichannels rarely open. In the cytoplasm, hemichannels were present in ∼0.1-μm diameter “coated” and in larger 0.2–0.5-μm diameter vesicles. The smaller coated vesicles contained endogenous plasma membrane proteins of the oocyte intermingled with 5–40 Cx50 hemichannels, and were observed to fuse with the plasma membrane. The larger vesicles, which contained Cx50 hemichannels, gap junction channels, and endogenous membrane proteins, originated from invaginations of the plasma membrane, as their lumen was labeled with the extracellular marker peroxidase. The insertion rate of hemichannels into the plasma membrane (80,000/s), suggested that an average of 4,000 small coated vesicles were inserted every second. However, insertion of hemichannels occurred at a constant plasma membrane area, indicating that insertion by vesicle exocytosis (60–500 μm2 membranes/s) was balanced by plasma membrane endocytosis. These exocytotic and endocytotic rates suggest that the entire plasma membrane of the oocyte is replaced in ∼24 h.


1990 ◽  
Vol 258 (1) ◽  
pp. C179-C184 ◽  
Author(s):  
G. Schmalzing ◽  
P. Eckard ◽  
S. Kroner ◽  
H. Passow

During meiotic maturation, plasma membranes of Xenopus laevis oocytes completely lose the capacity to transport Na and K and to bind ouabain. To explore whether the downregulation might be due to an internalization of the sodium pump molecules, the intracellular binding of ouabain was determined. Selective permeabilization of the plasma membrane of mature oocytes (eggs) by digitonin almost failed to disclose ouabain binding sites. However, when the eggs were additionally treated with 0.02% sodium dodecyl sulfate (SDS) to permeabilize inner membranes, all sodium pumps present before maturation were recovered. Phosphorylation by [gamma-32P]ATP combined with SDS-polyacrylamide gel electrophoresis (PAGE) and autoradiography showed that sodium pumps were greatly reduced in isolated plasma membranes of eggs. According to sucrose gradient fractionation, maturation induced a shift of sodium pumps from the plasma membrane fraction to membranes of lower buoyant density with a protein composition different from that of the plasma membrane. Endocytosed sodium pumps identified on the sucrose gradient from [3H]ouabain bound to the cell surface before maturation could be phosphorylated with inorganic [32P]phosphate. The findings suggest that downregulation of sodium pumps during maturation is brought about by translocation of surface sodium pumps to an intracellular compartment, presumably endosomes. This contrasts the mechanism of downregulation of Na-dependent cotransport systems, the activities of which are reduced as a consequence of a maturation-induced depolarization of the membrane without a removal of the corresponding transporter from the plasma membrane.


Sign in / Sign up

Export Citation Format

Share Document