Primary Low Cerebrospinal Fluid Pressure Syndrome With Galactorrhea: Findings at MR Imaging

Cephalalgia ◽  
1996 ◽  
Vol 16 (2) ◽  
pp. 124-126
Author(s):  
A Sawada ◽  
N Morita ◽  
S Yoshida ◽  
M Yamamoto ◽  
K Hashimoto

A case of primary low cerebrospinal fluid (CSF) pressure syndrome with galactorrhea is reported. Magnetic resonance imaging demonstrated diffusely enhanced meninges, edematous brain, and enlarged pituitary gland. Coincidental enlargement of pituitary gland and edematous brain due to low CSF pressure compressed the pituitary portal system. The 1ow-perfused anterior lobe of pituitary gland would be the mechanism of galactorrhea.

Pain Medicine ◽  
2020 ◽  
Author(s):  
Mieke Hulens ◽  
Frans Bruyninckx ◽  
Wim Dankaerts ◽  
Ricky Rasschaert ◽  
Peter De Mulder ◽  
...  

Abstract Objective Pain in fibromyalgia (FM) and chronic fatigue syndrome (CFS) is assumed to originate from central sensitization. Perineural cysts or Tarlov cysts (TCs) are nerve root dilations resulting from pathologically increased cerebrospinal fluid pressure. These cysts initially affect sensory neurons and axons in dorsal root ganglia and produce sensory symptoms (pain and paresthesia). Symptomatic TC (STC) patients often complain about widespread pain and fatigue. Consequently, STC patients may initially be diagnosed with FM, CFS, or both. The objective of this study was to document the prevalence of TCs in patients diagnosed with FM or CFS. Design A retrospective study. Setting An outpatient clinic for musculoskeletal disorders. Subjects Patients diagnosed with FM according to the 1990 American College of Rheumatology criteria or with CFS according to the 1994 Centers for Disease Control criteria were selected. Methods Review of lumbar and sacral magnetic resonance imaging scans including TCs ≥5 mm in size. Results In total, 197 patients with FM, CFS, or both underwent magnetic resonance imaging. Ninety-one percent were women. The mean age was 48.1 (±11.9) years. TCs were observed in 39% of patients, with a mean size of 11.8 (±5.2) mm. In males, the prevalence was 12%, vs. 42% in females. Conclusions In patients diagnosed with FM or CFS, the prevalence of TCs was three times higher than that in the general population. This observation supports the hypothesis that STCs, FM, and CFS may share the same pathophysiological mechanism, i.e., moderately increased cerebrospinal fluid pressure, causing irritation of neurons and axons in dorsal root ganglia.


Author(s):  
Pankaj Arora ◽  
Kanica Rawat ◽  
Rajiv Azad ◽  
Kehkashan Chouhan

Abstract Objective Aim of this study is to evaluate the effect of craniospinal interventions on cerebrospinal fluid (CSF) flow hydrodynamics and study the correlation of postoperative changes in flow alteration with clinical outcome. Materials and Methods Fifty patients who underwent various craniospinal procedures were studied using conventional and phase-contrast magnetic resonance imaging (PCMRI) protocol. CSF flow quantification was performed at cerebral aqueduct, foramen magnum, C2–3, and D12–L1 vertebral levels with site showing maximal alteration of CSF flow dynamics considered as the region of interest. Velocity encoding was kept at 20 cm/s. Patients with pathology atcraniovertebral junction were considered separately (group I) from others (group II) due to different flow dynamics. Follow-up scans were performed after an interval of 1 month for temporal evaluation of changes in CSF flow dynamics. Results Patients in both groups showed a significant change in peak CSF velocity postoperatively (mean change of 1.34 cm/s in group I and 0.28 cm/s in group II) with bidirectional improvement in flow on cine-phase-contrast qualitative images. Regional pain (82%) and headache (46%) were seen in most of the patients preoperatively. Postoperatively clinical symptoms improved in 59.5%, static in 26.2%, and worsened in 14.3%. In both the groups, an improvement in clinical symptomatology had significant correlation with mean changes in peak CSF velocity postoperatively (p = 0.04 in both groups). Conclusion PCMRI can effectively evaluate changes in CSF flow noninvasively both pre- and postoperatively. This may have potential role in determining clinical outcome and prognosis of patients undergoing procedures in craniospinal axis.


2021 ◽  
Vol 127 ◽  
pp. 171-183
Author(s):  
Inge C.M. Verheggen ◽  
Whitney M. Freeze ◽  
Joost J.A. de Jong ◽  
Jacobus F.A. Jansen ◽  
Alida A. Postma ◽  
...  

2020 ◽  
Vol 33 (3) ◽  
pp. 244-251
Author(s):  
Aynur Guliyeva ◽  
Melda Apaydin ◽  
Yesim Beckmann ◽  
Gulten Sezgin ◽  
Fazil Gelal

Background Idiopathic intracranial hypertension (IIH) is a disease characterised by increased cerebral pressure without a mass or hydrocephalus. We aimed to differentiate migraine and IIH patients based on imaging findings. Results Patients with IIH ( n = 32), migraine patients ( n = 34) and control subjects ( n = 33) were evaluated. Routine magnetic resonance imaging, contrast-enhanced 3D magnetic resonance venography and/or T1-weighted 3D gradient-recalled echo were taken with a 1.5 T magnetic resonance scanner. Optic-nerve sheath distention, flattened posterior globe and the height of the pituitary gland were evaluated in the three groups. Transverse sinuses (TS) were evaluated with respect to score of attenuation/stenosis and distribution. Pearson chi-square, Fisher’s exact test and chi-square trend statistical analyses were used for comparisons between the groups. A p-value of <0.05 was considered statistically significant. Decreased pituitary gland height, optic-nerve sheath distention and flattened posterior globe were found to be statistically significant ( p < 0.001) in IIH patients. Bilateral TS stenosis was also more common in IIH patients than in the control group and migraine group ( p = 0.02). Conclusion Decreased pituitary gland height, optic-nerve sheath distention, flattened posterior globe, bilateral stenosis and discontinuity in TS are significant findings in differentiating IIH cases from healthy individuals and migraine patients. Bilateral TS stenosis may be the cause rather than the result of increased intracranial pressure. The increase in intracranial pressure, which is considered to be responsible for the pathophysiology of IIH, is not involved in the pathophysiology of migraine.


Sign in / Sign up

Export Citation Format

Share Document