Initial Ku-Band Air-Ground Channel Measurement Results

Author(s):  
D.W. Matolak ◽  
A. Smith ◽  
K.A. Shalkhauser ◽  
S.C. Bretmersky
2019 ◽  
Vol 28 (08) ◽  
pp. 1920005 ◽  
Author(s):  
Tian Qi ◽  
Songbai He

A broadband low-noise amplifier (LNA) using 0.13 [Formula: see text]m GaAs HEMT technology for Ku-band applications is presented in this paper. By introducing an improved self-bias architecture, the LNA is achieved with low noise figure (NF) and high power gain. Compared with traditional LNA, self-bias architecture can reduce DC supplies to single one, and the improved architecture proposed here also takes part in source matching to reduce the complexity matching networks for broadband applications. To verify, an LNA operating over 12–18-GHz bandwidth is fabricated. The measurement results, for all the 72 chips on the wafer, and their average values are in great accordance with the simulation results, with 25.5–27.5-dB power gain, 1.1–1.8-dB NF, 15–17.5-dBm output power at [Formula: see text] and with a chip size of 2 mm [Formula: see text] 1.5 mm.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Zheng Xu ◽  
Chengxiang Hao ◽  
Kuiwen Xu ◽  
Shichang Chen

This paper presents a novel compact Ku-band active electronically steerable antenna array design with a low-cost and integrated T/R 3D module employed for airborne synthetic aperture radar (SAR) systems. The entire system adopts 3D multilayer technology with vertical interconnection to construct the hermetically packaging RF modules. By assembling different multifunctional modules into a whole multilayer board, the 3D T/R technique greatly improves the system integration and reduces implementation cost and size. Besides, a wideband circular polarized antenna array was designed in LTCC and connected to the proposed T/R modules to form a complete AESA. The whole proposed antenna system has been fabricated and experimentally investigated. Measurement results showed very good phased array performances in terms of gain, axial ratio, and radiating patterns. The low-cost, lightweight, and low-power features exhibited by the proposed design validate its applicability for weight and power constrained platforms with great electronic steering ability.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 461 ◽  
Author(s):  
Pronami Bora ◽  
Mona Mudaliar ◽  
Yuvraj Baburao Dhanade ◽  
K Sreelakshm ◽  
Chayan Paul ◽  
...  

A metamaterial extended microstrip rectangular patch antenna with CSRR loading and defected ground structures(DGS) is proposed for wideband applications with band notching at the frequencies of KU band. The proposed antenna is designed by embedding it on Rogers RT/Duroid 5880 substrate with good impedance matching of 50 Ω at the feedline.The high frequency structure simulator (HFSS) is used to design and simulate the antennas parameters in the operating band. Measurement results confirm the antenna characteristics as predicted in the simulation with a slight shift in frequencies.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yadgar I. Abdulkarim ◽  
Halgurd N. Awl ◽  
Fahmi F. Muhammadsharif ◽  
Muharrem Karaaslan ◽  
Rashad H. Mahmud ◽  
...  

Improvement in the antenna gain is usually achieved at the expense of bandwidth and vice versa. This is where the realization of this enhancement can be made through compromising the antenna profile. In this work, we propose a new design of incorporating periodic metasurface array to enhance the bandwidth and gain while keeping the antenna to a low-profile scheme. The proposed antenna was simulated and fabricated in order to validate the results in the operating frequency range from 10 MHz to 43.5 GHz. Computer simulation technology (CST) microwave studio software was used to design and simulate the proposed antenna, while LPKF prototyping PCB machine was utilized to fabricate the antenna. Results showed that the antenna generated a gain and bandwidth of 14.2 dB and 2.13 GHz, respectively. Following the good agreement between the numerical and measurement results, it is believed that the proposed antenna can be potentially attractive for the application of satellite communications in Ku-band electromagnetic wave.


Frequenz ◽  
2020 ◽  
Vol 74 (7-8) ◽  
pp. 247-253
Author(s):  
Wen Tao Li ◽  
Meng Wei ◽  
Bahareh Badamchi ◽  
Harish Subbaraman ◽  
Xiaowei Shi

AbstractIn this paper, a novel tri-band reconfigurable patch antenna with simple structure is presented. By changing the on-off state of only two PIN diodes, the antenna can operate in three bands, namely X-band, Ku-band, and Ka-band. The overall size of the antenna is 0.24λL × 0.5λL × 0.019λL, where λL is the free-space wavelength of the lowest operating frequency. A prototype is fabricated and measured to verify the design. The measurement results are in good agreement with the simulation results, which indicate that the proposed antenna can be flexibly switched between three bands of 10.9–11.18 GHz, 15.65–15.9 GHz, and 32.3–33.6 GHz with stable radiation patterns.


2019 ◽  
Vol 8 (1) ◽  
pp. 172-179
Author(s):  
Tan Gan Siang ◽  
David Paul David Dass ◽  
Siti Zuraidah Ibrahim ◽  
Mohd Nazri A. Karim ◽  
Aliya A. Dewani

A Ku-band Substrate Integrated Waveguide power divider is proposed. In this work, the SIW power divider is designed with T-junction configuration. The SIW technique enables the power divider to have low insertion loss, low cost and features uniplanar circuit. An additional of metallic via hole is added in the center of the junction to improve the return loss performance of the Tjunction SIW power divider. The simulated input return losses at port 1 are better than 27 dB, and features equal power division of about -3.1 dB ±0.4 dB at both output ports across frequency range of 13.5-18 GHz. The SIW power divider is fabricated, and the measurement results show acceptable performances. Since there are some losses contributed by the SMA connector of the fabricated SIW power divider prototype, an additional SIW transmission line is simulated and fabricated to analyze the connector loss.


Author(s):  
Zeenat Afroze ◽  
Mohanad Mohsen ◽  
David W. Matolak ◽  
Hudson Dye

2011 ◽  
Vol 42 (S 01) ◽  
Author(s):  
D Tibussek ◽  
F Distelmaier ◽  
S Kummer ◽  
E Mayatepek

Sign in / Sign up

Export Citation Format

Share Document