scholarly journals A Circularly Polarized Sub-Terahertz Antenna with Low-Profile and High-Gain for 6G Wireless Communication Systems

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Basem Aqlan ◽  
Mohamed Himdi ◽  
Hamsakutty Vettikalladi ◽  
Laurent Le-Coq
Author(s):  
Soukaina Sekkal ◽  
Laurent Canale ◽  
Mariam El Gharbi ◽  
Adel Asselman

In this work, a new flexible antenna integrated with OLED light sources is presented for WiMAX wireless communication systems. The proposed antenna was placed on a 100% polyester base with a thickness of 1.5 mm and achieved a high gain. We evaluated and tested its performance, including reflection coefficient, radiation pattern and gain. The flexible and simple patch antenna has been designed to operate at 3.5 GHz for WiMAX wireless communication systems with a gain value of 5.38 dB. This article proves the applicability of the proposed material for the integration of flexible antennas in OLEDs while maintaining gain performance similar to conventional flat antennas.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Hamsakutty Vettikalladi ◽  
Waleed Tariq Sethi ◽  
Ahmad Fauzi Bin Abas ◽  
Wonsuk Ko ◽  
Majeed A. Alkanhal ◽  
...  

Terahertz (THz) links will play a major role in high data rate communication over a distance of few meters. In order to achieve this task, antenna designs with high gain and wideband characteristics will spearhead these links. In this contribution, we present different antenna designs that offer characteristics better suited to THz communication over short distances. Firstly, a single-element antenna having a dipole and reflector is designed to operate at 300 GHz, which is considered as a sub-terahertz band. That antenna achieves a wide impedance bandwidth of 38.6% from 294 GHz to 410 GHz with a gain of 5.14 dBi. Secondly, two designs based on the same dipole structure but with added directors are introduced to increase the gain while maintaining almost the same bandwidth. The gains achieved are 8.01 dBi and 9.6 dBi, respectively. Finally, an array of 1×4 elements is used to achieve the highest possible gain of 13.6 dBi with good efficiency about 89% and with limited director elements for a planar compact structure to state-of-the-art literature. All the results achieved make the proposed designs viable candidates for high-speed and short-distance wireless communication systems.


2019 ◽  
Vol 9 (9) ◽  
pp. 1896 ◽  
Author(s):  
Kyo-Seung Keum ◽  
Young-Mi Park ◽  
Jae-Hoon Choi

A low-profile wideband monocone antenna with bent shorting strips, and parasitic and circular sleeves is proposed. By loading the bent shorting strips, parasitic sleeves, and circular sleeves, miniaturization of the antenna is achieved. Along with bent shorting strips from the monocone hat to the ground plane, parasitic sleeves, and circular sleeves are mounted to enhance the impedance bandwidth. From the experimental results, the –10 dB reflection coefficient bandwidth of the proposed antenna ranges from 810 MHz to 5340 MHz. In addition to the wide bandwidth characteristics, the proposed antenna has highly desirable omnidirectional radiation properties for wireless communication systems.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4261 ◽  
Author(s):  
Md. Samsuzzaman ◽  
Mohammad Islam

A simple, compact sickle-shaped printed antenna with a slotted ground plane is designed and developed for broadband circularly polarized (CP) radiation. The sickle-shaped radiator with a tapered feed line and circular slotted square ground plane are utilized to realize the wideband CP radiation feature. With optimized dimensions of 0.29λ × 0.29λ × 0.012λ at 2.22 GHz frequency for the realized antenna parameters, the measured results display that the antenna has a 10 dB impedance bandwidth of 7.70 GHz (126.85%; 2.22–9.92 GHz) and a 3 dB axial ratio (AR) bandwidth of 2.64 GHz (73.33%; 2.28–4.92 GHz). The measurement agrees well with simulation, which proves an excellent circularly polarized property. For verification, the mechanism of band improvement and circular polarization are presented, and the parametric study is carried out. Since, the proposed antenna is a simple design structure with broad impedance and AR bandwidth, which is a desirable feature as a candidate for various wireless communication systems. Because of the easy printed structure and scaling the dimension with broadband CP characteristics, the realized antenna does incorporate in a number of CP wireless communication applications.


Sign in / Sign up

Export Citation Format

Share Document