Reliability of transmission tower structure system dominated by wind load effect

Author(s):  
Haibo Chen ◽  
Zonggao Liao
2013 ◽  
Vol 405-408 ◽  
pp. 763-766
Author(s):  
Yan Zhong Ju ◽  
Xiao Lei Zhang

tower consisted of steel tubes and angel steels has equal advantages which steel tube tower has and not easy to happen some bar breeze vibration,but but the wind vibration response for such transmission tower structure research is less. In the engineering background of a tower consisted of steel tubes and angel steels , set up the finite element model for transmission towers. Using Kaimal spectrum for numerical simulation of wind velocity time history. Of 90 ° Angle of wind direction wind to dynamic response are analyzed, the results show that for the displacement, the maximum of dynamic analysis results 88% larger than the result of the average wind, 53.7% larger than standard wind load static result; For axial force, the maximum of dynamic analysis results 147% larger than average the result of the wind, 108% larger than standard wind load static result. So in view of the transmission tower structure dynamic response analysis should be more precise.


2017 ◽  
Vol 6 (2) ◽  
pp. 9
Author(s):  
REDDY A. ANVESH ◽  
KUMAR CH. NAVEEN ◽  
REDDY K. AVINASH ◽  
CHANDRASEKHAR K.N.V. ◽  
◽  
...  

Energies ◽  
2015 ◽  
Vol 8 (6) ◽  
pp. 4963-4982 ◽  
Author(s):  
Doohyun Kyung ◽  
Youngho Choi ◽  
Sangseom Jeong ◽  
Junhwan Lee

2016 ◽  
Vol 69 (2) ◽  
pp. 137-145 ◽  
Author(s):  
Thiago Dias dos Santos ◽  
Gustavo Henrique Siqueira ◽  
Luiz Carlos Marcos Vieira Junior

2020 ◽  
Vol 82 (2) ◽  
pp. 215-224
Author(s):  
V.I. Erofeev ◽  
I.A. Samokhvalov

A numerical study of the survivability of the flange assembly is carried out upon reaching a critical load and in the presence of a defect in one of the design areas, taking into account the calculated values of the aerodynamic coefficients. An experiment is being carried out to determine the values of the wind load acting on the supporting legs of a metal tower. The calculation of the stressstrain state is performed using software system as SCAD Office and IDEA StatiCa 10.0. After calculating the forces in the core model of the structure, a threedimensional plate model of the assembly is formed and prepared for calculation. According to the results of the experiment, a graph was compiled with the values of aerodynamic coefficients, which were used in calculating the stressstrain state of the node. The analysis of the calculation results revealed that in the design (defectfree) state of the structure, the safety factor of the bearing units and elements is 35-40% (equivalent stresses were 165 MPa). If there is a defect in the metal structures of the belt in the region of the flange, the equivalent stresses increase to 247.6 MPa in the region of the cleavage (defective hole), thus, the margin in bearing capacity drops to 0.4%. As a result of the assessment of the survivability of the flange connection, it was revealed that the connection has a high potential survivability, in turn, the flange itself is able to work in the presence of some defects without reducing its bearing capacity to a critical level. The aerodynamic coefficients obtained in this work will determine the wind load on this type of profile and can be used in design calculations of tower structures for wind loads.


2022 ◽  
Vol 252 ◽  
pp. 113575
Author(s):  
Wentong Zhang ◽  
Yiqing Xiao ◽  
Chao Li ◽  
Qingxing Zheng ◽  
Yanan Tang

Author(s):  
Ji Hyeon Kim ◽  
Hae-Sung Lee

<p>This paper proposes a general procedure for evaluating a nominal value of wind velocity for a wind load- governed limit state to secure a target reliability index during the design life of a structure. The nominal value of wind velocity, referred to as a basic wind velocity, and wind load factor should be determined so that the factored wind load effect secures a target reliability index for a wind load-governed limit state. In this study, the analytical form of the return period of the basic wind velocity is expressed as a function of the target reliability index, wind load factor, and statistical parameters of wind pressure, which are derived as linear functions of the coefficient of wind velocity. The proposed approach is applied to the Korean Highway Bridge Design Code-Cable supported Bridge, which specifies the design life of a structure as 100- and 200-year.</p>


2020 ◽  
Vol 10 (24) ◽  
pp. 8775
Author(s):  
Haiwei Guan ◽  
Yuji Tian

Under the action of the same wind azimuth, the extreme values of the wind load effect components of building structures are generated in the along-wind, cross-wind, vertical, and torsional directions. In designing the wind-resistant structure, the extreme values of effect components need to be combined to determine the internal force envelope values of members. Complete quadratic combination (CQC) and Turkstra combination rules are often used to determine the combination value of extreme values of wind effect components. The extreme probability distribution expressions of the CQC, and the Turkstra and approximate rules, are derived. The simplified combination Equations and combination coefficients of the CQC and Turkstra approximate rules are proposed in this paper. We use the combination Equations and Monte Carlo simulation method to analyze the accuracy of Turkstra and its approximate rules. The results show that the combination extreme is associated with the correlation coefficients, mean values, ratios of standard deviations, and fluctuating extremes of effect components. The errors between Turkstra and its approximate rules are small when load effect components show a positive correlation. The errors are largest when the standard deviations of components are equal. Our research results provide a theoretical basis for the combination method of wind load effect components of building structures.


Sign in / Sign up

Export Citation Format

Share Document