Single op‐amp second‐order loop filter for continuous‐time delta–sigma modulators

2015 ◽  
Vol 51 (8) ◽  
pp. 619-621 ◽  
Author(s):  
Young‐Kyun Cho ◽  
Bong Hyuk Park
2017 ◽  
Vol 27 (03) ◽  
pp. 1850044 ◽  
Author(s):  
Alireza Shamsi ◽  
Esmaeil Najafi Aghdam

Power consumption and bandwidth are two of the most important parameters in design of low power wideband modulators as power consumption is growing with the increase in bandwidth. In this study, a multi bit wideband low-power continuous time feed forward quadrature delta sigma modulator (CT-FF-QDSM) is designed for WLAN receiver applications by eliminating adders from modulator structure. In this method, a real modulator is designed and its excess loop delay (ELD) is compensated, then, it is converted into a quadrature structure by applying the complex coefficient to loop filter. Complex coefficients are extracted by the aid of a genetic algorithm to further improve signal to noise ratio (SNR) for bandwidth. One of the disadvantages of CT-FF-QDSM is the adders of loop filters which are power hungry and reduce the effective loop gain. Therefore, the adders have been eliminated while the transfer function is intact in the final modulator. The system level SNR of the proposed modulator is 62.53[Formula: see text]dB using OSR of 12. The circuit is implemented in CMOSTSMC180nm technology. The circuit levels SNR and power consumption are 54[Formula: see text]dB and 13.5[Formula: see text]mW, respectively. Figure of Merit (FOM) obtained from the proposed modulator is about 0.824 (pj/conv) which is improved (by more than 40%) compared to the previous designs.


Author(s):  
Astria Nur Irfansyah ◽  
Long Pham ◽  
Andrew Nicholson ◽  
Torsten Lehmann ◽  
Julian Jenkins ◽  
...  

2018 ◽  
Vol 7 (2.16) ◽  
pp. 38
Author(s):  
Anshu Gupta ◽  
Lalita Gupta ◽  
R K. Baghel

A second-order sigma delta modulator that uses an operational transconductance amplifier as integrator and latch comparator as quantizer. The proposed technique where a low power high gain OTA is used as integrator and another circuit called dynamic latch comparator with two tail transistors and two controlling switches are used to achieve high speed, low power and high resolution in second order delta sigma modulator. It enhances the power efficiency and compactness of the modulator by implementing these blocks as sub modules. A second order modulator has been designed to justify the effectiveness of the proposed design. Technology 180nm CMOS process is used to implement complete second order continuous time sigma delta modulator.  We introduce the sub threshold three stage OTA, which is a way of achieving low distortion operation with input referred noise at 1 KHz is equal to the 2.2647pV/   and with low power consumption of 296.72nW.  A high-speed, low-voltage and a low-power Double-Tail dynamic comparator is also proposed. The proposed structure is contrasted with past dynamic comparators. In this paper, the comparator’s delay will be investigated and systematic analysis are inferred. a novel comparator using two tail transistor is proposed, here circuitry of a customized comparator having two tail is changed for low power dissipation and also it operates fast at little supply voltages. By maintaining the outline and by including couple of transistors, during the regeneration strengthening of positive feedback can be maintained, this results in amazingly diminished delay parameter. It is investigated that in proposed design structure of comparator using two tail transistors, power consumption is reduced and delay time is also diminished to a great extent. The proposed comparator is having maximum clock frequency that is possibly expanded up to 1GHz at voltages of 1 V whereas it is dissipating 10.99 µW of power, individually. By using sub threshold three stage OTA and dynamic standard two tail latch comparator, designed second order sigma delta ADC will consume 29.95µW of power.


2017 ◽  
Vol 26 (07) ◽  
pp. 1750117 ◽  
Author(s):  
Hongmei Chen ◽  
Li Wang ◽  
Ting Li ◽  
Lin He ◽  
Fujiang Lin

This paper presents a discrete-time multi-bit Delta–Sigma modulator employing successive approximation (SA)-quantizers for bio-signal acquisitions. In the proposed [Formula: see text] modulator, the input signal is separately quantized and the signal summation is performed in the digital domain to avoid the power hungry analog adder. Two SA-quantizers are used in this modulator. One is dedicated to quantize the input signal and the other is to quantize the summation of the integrators’ outputs. Dynamic Element Matching (DEM) technique is used to mitigate the mismatch among the digital-to-analog conversion (DAC) elements. To reduce the complexity of the DEM logic, the 7-bit summed quantizer output is truncated into a 5-bit code before it is fed to the DEM circuits. Double tailed inverter-based op-amp is used in the loop filter for low-voltage operation. Correlated-double-sampling is adopted to enhance the effective gain of the integrator. The proposed modulator is designed and fabricated in a 130-nm CMOS technology. The measurement result shows that the modulator achieves a dynamic range of 80[Formula: see text]dB, a peak SNDR of 77[Formula: see text]dB in a 25[Formula: see text]kHz signal bandwidth at sampling rate of 800[Formula: see text]kHz. The prototype modulator occupies 0.25[Formula: see text]mm2 and consumes only 19.5[Formula: see text][Formula: see text]W from a 0.6[Formula: see text]V supply. The proposed modulator achieves a figure of merit of 67 fJ per conversion step.


Sign in / Sign up

Export Citation Format

Share Document