Inferential measurement of fluid flow from the cross-correlation of temperature fluctuations in the system

1967 ◽  
Vol 3 (4) ◽  
pp. 169 ◽  
Author(s):  
M.S. Beck ◽  
A. Plaskowski
1995 ◽  
Vol 292 ◽  
pp. 1-38 ◽  
Author(s):  
Chenning Tong ◽  
Z. Warhaft

The dispersion and mixing of passive scalar (temperature) fluctuations is studied in a turbulent jet. The temperature fluctuations were produced by heated fine wire rings placed axisymmetrically in the flow. Typically the ring diameters were of the same order as the jet, Dj, and they were placed in the self-similar region. However, other initial conditions were studied, including a very small diameter ring used to approximate a point source. Using a single ring to study dispersion (which is analogous to placing a line source in a planar flow such as grid turbulence), it was found that the intense local thermal field close to the ring disperses and fills the whole jet in approximately 1.5 eddy turnover times. Thereafter the thermal field evolves in the same way as for the traditional heated jet experiments. Two heated rings were used to study the mixing of two independently introduced scalar fields. Here an inference method (invoking the principle of superposition) was used to determine the evolution of the cross-correlation coefficient, ρ, and the segregation parameter, α, as well as the coherence and co-spectrum. While initially strongly dependent on ring locations and spacing, ρ and α reached asymptotic values of 1 and 0.04, respectively, also in about 1.5 eddy turnover times. These results are contrasted with mixing and dispersion in grid turbulence where the evolution is slower. Measurements in the far field of the jet (where ρ = 1) of the square of the scalar derivative conditioned on the scalar fluctuation itself, as well as other conditional statistics, showed strong dependence on the measurement location, as well as the direction in which the derivative was determined. The cross-correlation between the square of the scalar derivative and the signal showed a clear Reynolds-number trend, decreasing as the jet Reynolds number was varied from 2800 to 18 000. The far-field measurements, using the heated rings, were corroborated by new heated jet experiments.


2019 ◽  
Vol 11 (1) ◽  
pp. 01025-1-01025-5 ◽  
Author(s):  
N. A. Borodulya ◽  
◽  
R. O. Rezaev ◽  
S. G. Chistyakov ◽  
E. I. Smirnova ◽  
...  

Author(s):  
Matthias Weber ◽  
Anja Niehoff ◽  
Markus A. Rothschild

AbstractThis work deals with the examination of tool marks in human cartilage. We compared the effectiveness of several cleaning methods on cut marks in porcine cartilage. The method cleaning by multiple casts achieved the significantly highest scores (P = 0.02). Furthermore, we examined the grain-like elevations (dots) located on casts of cut cartilage. The results of this study suggest that the casting material forms these dots when penetrating cartilage cavities, which are areas where the strong collagen fibres leave space for the chondrocytes. We performed fixation experiments to avoid this, without success. In addition, 31 casting materials were compared regarding contrast under light-microscope and 3D tool marks scanner. Under the light-microscope, brown materials achieved significantly higher values than grey (P = 0.02) or black (P = 0.00) whereas under the 3D scanner, black materials reached higher contrast values than grey (P = 0.04) or brown (P = 0.047). To compare the accuracy and reproducibility of 6 test materials for cartilage, we used 10 knives to create cut marks that were subsequently scanned. During the alignment of the individual signals of each mark, the cross-correlation coefficients (Xmax) and lags (LXmax) were calculated. The signals of the marks in agarose were aligned with significantly fewer lags and achieved significantly higher cross-correlation coefficients compared to all tested materials (both P = 0.00). Moreover, we determined the cross-correlation coefficients (XC) for known-matches (KM) per material. Agarose achieved significantly higher values than AccuTrans®, Clear Ballistics™, and gelatine (all P = 0.00). The results of this work provide valuable insights for the forensic investigation of marks in human costal cartilage.


2019 ◽  
Vol 11 (12) ◽  
pp. 1428 ◽  
Author(s):  
Yong Jia ◽  
Yong Guo ◽  
Chao Yan ◽  
Haoxuan Sheng ◽  
Guolong Cui ◽  
...  

This paper demonstrates the feasibility of detection and localization of multiple stationary human targets based on cross-correlation of the dual-station stepped-frequency continuous-wave (SFCW) radars. Firstly, a cross-correlation operation is performed on the preprocessed pulse signals of two SFCW radars at different locations to obtain the correlation coefficient matrix. Then, the constant false alarm rate (CFAR) detection is applied to extract the ranges between each target and the two radars, respectively, from the correlation matrix. Finally, the locations of human targets is calculated with the triangulation localization algorithm. This cross-correlation operation mainly brings about two advantages. On the one hand, the cross-correlation explores the correlation feature of target respiratory signals, which can effectively detect all targets with different signal intensities, avoiding the missed detection of weak targets. On the other hand, the pairing of two ranges between each target and two radars is implemented simultaneously with the cross-correlation. Experimental results verify the effectiveness of this algorithm.


Sign in / Sign up

Export Citation Format

Share Document