Passive scalar dispersion and mixing in a turbulent jet

1995 ◽  
Vol 292 ◽  
pp. 1-38 ◽  
Author(s):  
Chenning Tong ◽  
Z. Warhaft

The dispersion and mixing of passive scalar (temperature) fluctuations is studied in a turbulent jet. The temperature fluctuations were produced by heated fine wire rings placed axisymmetrically in the flow. Typically the ring diameters were of the same order as the jet, Dj, and they were placed in the self-similar region. However, other initial conditions were studied, including a very small diameter ring used to approximate a point source. Using a single ring to study dispersion (which is analogous to placing a line source in a planar flow such as grid turbulence), it was found that the intense local thermal field close to the ring disperses and fills the whole jet in approximately 1.5 eddy turnover times. Thereafter the thermal field evolves in the same way as for the traditional heated jet experiments. Two heated rings were used to study the mixing of two independently introduced scalar fields. Here an inference method (invoking the principle of superposition) was used to determine the evolution of the cross-correlation coefficient, ρ, and the segregation parameter, α, as well as the coherence and co-spectrum. While initially strongly dependent on ring locations and spacing, ρ and α reached asymptotic values of 1 and 0.04, respectively, also in about 1.5 eddy turnover times. These results are contrasted with mixing and dispersion in grid turbulence where the evolution is slower. Measurements in the far field of the jet (where ρ = 1) of the square of the scalar derivative conditioned on the scalar fluctuation itself, as well as other conditional statistics, showed strong dependence on the measurement location, as well as the direction in which the derivative was determined. The cross-correlation between the square of the scalar derivative and the signal showed a clear Reynolds-number trend, decreasing as the jet Reynolds number was varied from 2800 to 18 000. The far-field measurements, using the heated rings, were corroborated by new heated jet experiments.

2021 ◽  
Vol 409 ◽  
pp. 158-178
Author(s):  
Abdelkader Feddal ◽  
Abbes Azzi ◽  
Ahmed Zineddine Dellil

This paper deals with studying numerically two circular turbulent jets impinging on a flat surface with a low velocity cross flow by using ANSYS CFX 16.2, with the aim of proving the effect ofReynolds number on the flow demeanor in a vertical circular free turbulent jet with cross flow. Five turbulence models of the RANS (Reynolds Averaged Navier–Stokes) approach were tested and the k -ω SST model was chosen to validate CFD results with the experimental data. Average velocity profiles, velocity and turbulent kinetic energy contours and streamlines are presented for four case configurations. In the first three cases, the following parameters have been varied: Reynolds number at the level of the two jets ( ), wind velocity at the level of the cross-flow ( ), and the distance between the two jets (S = 45mm, 90mm and 135mm). In the last case, a new configuration of the phenomenon not yet studied so far was treated, where horizontal cross-flows were introduced from both sides in order to simulate gusts of wind disrupting a VSTOL aircraft which tries to operate close to the ground. This case was carried out for Reynolds number based on the crossflow of 4 104, 10 104 and 20 104 .The numerical results obtained show that the deflection of the jets is minimal when the Reynolds number at the level of the jets is greater than that of the cross-flow. The increase of Reynolds number at the level of the cross-flow reveals a significant deviation of the two jets with an intensity which always remains less for the second jet. As for the space parameter between the two jets, it turns out that the fact of further spacing the two jets makes the first jet even more vulnerable and leads to a greater deflection. Finally, the simulation of the wind gusts from the front and the back caused a zone of turbulence which resulted from a form of "interlacing" of the two jets under the effect of the transverse current imposed by the two sides.


1984 ◽  
Vol 144 ◽  
pp. 363-387 ◽  
Author(s):  
Z. Warhaft

The interference of passive thermal fields produced by two (and more) line sources in decaying grid turbulence is studied by using the inference method described by Warhaft (1981) to determine the cross-correlation coefficient ρ between the temperature fluctuations produced by the sources. The evolution of ρ as a function of downstream distance, for 0.075 < d/l < 10, where d is the wire spacing and l is the integral lengthscale of the turbulence, is determined for a pair of sources located at various distances from the grid. It is found that ρ may be positive or negative (thereby enhancing or diminishing the total temperature variance) depending on the line-source spacing, their location from the grid and the position of measurement. It is also shown that the effects of a mandoline (Warhaft & Lumley 1978) may be idealized as the interference of thermal fields produced by a number of line sources. Thus new light is shed on the rate of decay of scalar-variance dissipation. The thermal field of a single line source is also examined in detail, and these results are compared with other recent measurements.


1998 ◽  
Vol 358 ◽  
pp. 135-175 ◽  
Author(s):  
L. MYDLARSKI ◽  
Z. WARHAFT

The statistics of a turbulent passive scalar (temperature) and their Reynolds number dependence are studied in decaying grid turbulence for the Taylor-microscale Reynolds number, Rλ, varying from 30 to 731 (21[les ]Peλ[les ]512). A principal objective is, using a single (and simple) flow, to bridge the gap between the existing passive grid-generated low-Péclet-number laboratory experiments and those done at high Péclet number in the atmosphere and oceans. The turbulence is generated by means of an active grid and the passive temperature fluctuations are generated by a mean transverse temperature gradient, formed at the entrance to the wind tunnel plenum chamber by an array of differentially heated elements. A well-defined inertial–convective scaling range for the scalar with a slope, nθ, close to the Obukhov–Corrsin value of 5/3, is observed for all Reynolds numbers. This is in sharp contrast with the velocity field, in which a 5/3 slope is only approached at high Rλ. The Obukhov–Corrsin constant, Cθ, is estimated to be 0.45–0.55. Unlike the velocity spectrum, a bump occurs in the spectrum of the scalar at the dissipation scales, with increasing prominence as the Reynolds number is increased. A scaling range for the heat flux cospectrum was also observed, but with a slope around 2, less than the 7/3 expected from scaling theory. Transverse structure functions of temperature exist at the third and fifth orders, and, as for even-order structure functions, the width of their inertial subranges dilates with Reynolds number in a systematic way. As previously shown for shear flows, the existence of these odd-order structure functions is a violation of local isotropy for the scalar differences, as is the existence of non-zero values of the transverse temperature derivative skewness (of order unity) and hyperskewness (of order 100). The ratio of the temperature derivative standard deviation along and normal to the gradient is 1.2±0.1, and is independent of Reynolds number. The refined similarity hypothesis for the passive scalar was found to hold for all Rλ, which was not the case for the velocity field. The intermittency exponent for the scalar, μθ, was found to be 0.25±0.05 with a possible weak Rλ dependence, unlike the velocity field, where μ was a strong function of Reynolds number. New, higher-Reynolds-number results for the velocity field, which smoothly follow the trends of Mydlarski & Warhaft (1996), are also presented.


2021 ◽  
Vol 932 ◽  
Author(s):  
S. Lortie ◽  
L. Mydlarski

The analysis of turbulence by way of higher-order spectral moments is uncommon, despite the relatively frequent use of such statistical analyses in other fields of physics and engineering. In this work, higher-order spectral moments are used to investigate the internal intermittency of the turbulent velocity and passive-scalar (temperature) fields. This study first introduces the theory behind higher-order spectral moments as they pertain to the field of turbulence. Then, a short-time Fourier-transform-based method is developed to estimate these higher-order spectral moments and provide a relative, scale-by-scale measure of intermittency. Experimental data are subsequently analysed and consist of measurements of homogeneous, isotropic, high-Reynolds-number, passive and active grid turbulence over the Reynolds-number range $35\leq R_{\lambda } \leq ~731$ . Emphasis is placed on third- and fourth-order spectral moments using the definitions formalised by Antoni (Mech. Syst. Signal Pr., vol. 20 (2), 2006, pp. 282–307), as such statistics are sensitive to transients and provide insight into deviations from Gaussian behaviour in grid turbulence. The higher-order spectral moments are also used to investigate the Reynolds (Péclet) number dependence of the internal intermittency of velocity and passive-scalar fields. The results demonstrate that the evolution of higher-order spectral moments with Reynolds number is strongly dependent on wavenumber. Finally, the relative levels of internal intermittency of the velocity and passive-scalar fields are compared and a higher level of internal intermittency in the inertial subrange of the scalar field is consistently observed, whereas a similar level of internal intermittency is observed for the velocity and passive-scalar fields for the high-Reynolds-number cases as the Kolmogorov length scale is approached.


1982 ◽  
Vol 120 ◽  
pp. 475-504 ◽  
Author(s):  
A. Sirivat ◽  
Z. Warhaft

By producing thermal fluctuations with a mandohe and helium fluctuations with chimneys attached to the grid bars, the mixing of temperature and helium fluctuations as well as the decay of temperature and helium variance and their flux is investigated in decaying grid-generated turbulence. The helium, temperature and velocity fluctua- tions were measured with a modified ‘Way-Libby’ interference probe (Way & Libby 1970, 1971). It is shown that, as for temperature variance, the helium-variance decay rate is a function the ratio of the helium length scale to the velocity length scale. It is also shown that the decay of the cross-correlation between temperature and helium fluctuations is slow if both scalars are introduced close to the grid, but rapid if each scalar is introduced at a different distance from the grid, and hence at different scales. The results corroborate those of the inference method of Warhaft (1981), which is extended here to examine other cases. A particularly unexpected finding is that under certain circumstances the two-scalar cross-correlation may actually increase with distance from the grid, although the scalar covariance decreases. The return to isotropy of helium flux and temperature flux is also investigated and is shown to be slow if the scalar flux is produced near the grid bars, but faster if the flux is produced further downstream. For all the measurements helium and temperature were passive additives.


2017 ◽  
Vol 817 ◽  
pp. 61-79 ◽  
Author(s):  
L. Djenidi ◽  
N. Lefeuvre ◽  
M. Kamruzzaman ◽  
R. A. Antonia

The Reynolds number dependence of the non-dimensional mean turbulent kinetic energy dissipation rate$C_{\unicode[STIX]{x1D716}}=\overline{\unicode[STIX]{x1D716}}L/u^{\prime 3}$(where$\unicode[STIX]{x1D716}$is the mean turbulent kinetic energy dissipation rate,$L$is an integral length scale and$u^{\prime }$is the velocity root-mean-square) is investigated in decaying turbulence. Expressions for$C_{\unicode[STIX]{x1D716}}$in homogeneous isotropic turbulent (HIT), as approximated by grid turbulence, and in local HIT, as on the axis of the far field of a turbulent round jet, are developed from the Navier–Stokes equations within the framework of a scale-by-scale energy budget. The analysis shows that when turbulence decays/evolves in compliance with self-preservation (SP),$C_{\unicode[STIX]{x1D716}}$remains constant for a given flow condition, e.g. a given initial Reynolds number. Measurements in grid turbulence, which does not satisfy SP, and on the axis in the far field of a round jet, which does comply with SP, show that$C_{\unicode[STIX]{x1D716}}$decreases in the former case and remains constant in the latter, thus supporting the theoretical results. Further, while$C_{\unicode[STIX]{x1D716}}$can remain constant during the decay for a given initial Reynolds number, both the theory and measurements show that it decreases towards a constant,$C_{\unicode[STIX]{x1D716},\infty }$, as$Re_{\unicode[STIX]{x1D706}}$increases. This trend, in agreement with existing data, is not inconsistent with the possibility that$C_{\unicode[STIX]{x1D716}}$tends to a universal constant.


Sign in / Sign up

Export Citation Format

Share Document