Precise realisation of current mode integrator using current conveyor

1993 ◽  
Vol 29 (13) ◽  
pp. 1152 ◽  
Author(s):  
R. Nandi ◽  
S.B. Ray
2021 ◽  
Vol 25 (2) ◽  
pp. 65-76
Author(s):  
Tajinder Singh Arora ◽  

This research article explores the possible applications of voltage differencing current conveyor (VDCC), as a current mode universal filter and a sinusoidal oscillator. Without the need for an additional active/passive element, a very simple hardware modification makes it a dual-mode quadrature oscillator from the filter configuration. Both the proposed circuit requires only two VDCC and all grounded passive elements, hence a preferable choice for integration. The filter has some desirable features such as availability of all five explicit outputs, independent tunability of filter parameters. Availability of explicit quadrature current outputs, independence in start and frequency of oscillations, makes it a better oscillator design. Apart from prevalent CMOS simulation results, VDCC is also realized and experimentally tested using the off-the-shelf integrated circuit. All the pen and paper analysis such as non-ideal, sensitivity and parasitic analysis supports the design.


1998 ◽  
Vol 20 (4) ◽  
pp. 235-240 ◽  
Author(s):  
Muhammad Taher Abuelma'atti ◽  
Hussain Abdullah Al-Zaher

A novel universal current-mode filter with three inputs and one high imedance output is presented. The proposed circuit uses four plus-type second-generation current-conveyors, grounded resistors and grounded capacitors. The proposed circuit enjoys low active and passive sensitivities and independent control of the parametersω0/Q0using grounded resistors.


This article given a second generation current controlled current conveyor positive (CCCII+), second generation current controlled current conveyor negative (CCCII-), Quadrature oscillator with high-Q frequency choosing network and implementing completely different phase oscillators by employing (CCCII+) positive and (CCCII-) negative, and high band pass filter network, the approach is predicted on the CMOS technology . The root of this concept is, considering a customary voltage mode oscillator which consists of band pass filter with prime quality issue (high-Q) and voltage mode amplifier is transfigure into current mode oscillator by replacing tans-conductance amplifier. Because the loop of the oscillator is has lavish selectivity, the oscillator process less distortion. In addition 3dB bandwidth, oscillating condition, oscillation frequency of the oscillator could linearly, independently and electronically be tuned by adjusting the bias current of the (CCCII±)[1], lastly different simulations have been carried out to verify the linearity between output and input ports, range of frequency operations. These results can justify that the designed circuits are workable.


Sign in / Sign up

Export Citation Format

Share Document