Comparison of amplitude-optimised bit-edge equalisation with pulse-width modulation in high-speed wireline application

2009 ◽  
Vol 45 (3) ◽  
pp. 189
Author(s):  
L. Zhang ◽  
T. Kwasniewski
Author(s):  
Gang Yang ◽  
Kai Chen ◽  
Linglong Du ◽  
Jingmin Du ◽  
Baoren Li

A vacuum pressure tracking system with high-speed on-off valves is a discontinuous system due to the discrete nature of high-speed on-off valves. Chamber pressure changes in the system are determined by the mass flow rates during the processes of charging and discharging. Here, a sliding mode controller with an asymmetric compensator based on average mass flow rate is designed for accurate vacuum pressure tracking. The controller output signal is converted into the duty cycles of the high-speed on-off valves via a pulse width modulation pulsing scheme. Owing to the extreme asymmetry of the processes, an asymmetric structure comprising one high-speed on-off valve in the charging unit and three high-speed on-off valves in the discharging unit is applied to weaken the impact of asymmetry. In addition, an asymmetric compensator is also designed to modify the pulse width modulation pulsing scheme to further eliminate the asymmetry. Experimental results indicate that the proposed controller achieves better performance in pressure tracking with the asymmetric compensator overcoming process asymmetry and enhancing system robustness.


2020 ◽  
Vol 34 (4) ◽  
pp. 1711-1722
Author(s):  
Qiang Gao ◽  
Yuchuan Zhu ◽  
Zhang Luo ◽  
Niyomwungeri Bruno

2017 ◽  
Vol 9 (11) ◽  
pp. 168781401773324 ◽  
Author(s):  
Qi Zhong ◽  
Bin Zhang ◽  
Hua-Yong Yang ◽  
Ji-En Ma ◽  
Rong-Fong Fung

2018 ◽  
Vol 3 (1) ◽  
pp. 99-107
Author(s):  
Maciej Chojowski

Abstract The purpose of the article was to present the idea of space vector pulse width modulation (SVPWM) and implementation in Nios II softcore processor. The SVPWM module was described in a classical method in hardware description language both as an independent structure and as an additional component to softcore processor. The available methods were compared, and the experiment was carried out in the laboratory to test implemented SVPWM algorithm using high-speed induction motor.


2018 ◽  
Vol 1 (2) ◽  
pp. 1-12
Author(s):  
Nasrul Harun

The Technology and information development involve production process in industries using microcontroller as a brain in control process. The number  of control process with microcontroller using Fuzzy Logic method to get the function as is needed. Motors DC are used in some  equipment as a driver, not only in small scale but also in huge scale. It used in low or high speed too. The way of controlled chosen depend on the function of DC motor movement. The another method is Pulse Width Modulation (PWM). This is an effective method to controlled DC motor. This method produces square pulses which have specific comparison between high pulse and low pulse. It is usual scale from 0% to 100%. In this research, both Fuzzy Logic method and Pulse Width Modulation (PWM) method base of microcontroller ATMega 8535, both are integrated to control lthe  DC motor speed.


Sign in / Sign up

Export Citation Format

Share Document