scholarly journals High‐performance control for a permanent‐magnet linear synchronous generator using state feedback control scheme plus grey wolf optimisation

2020 ◽  
Vol 14 (5) ◽  
pp. 771-780 ◽  
Author(s):  
Xiaodong Sun ◽  
Minkai Wu ◽  
Zebin Yang ◽  
Gang Lei ◽  
Youguang Guo
Author(s):  
Yasser Boussairi ◽  
Abdelmajid Abouloifa ◽  
Ibtissam Lachkar ◽  
Abdellatif Hamdoun ◽  
Chaouqi Aouadi

<span lang="EN-US">This article presents nonlinear control of wind conversion chain connected to the grid based on a permanent magnet synchronous generator. The control objectives are threefold; i) forcing the generator speed to track a varying reference signal in order to extract the maximum power at different wind speed (MPPT); ii) regulating the rectifier output capacitor voltage; iii) reducing the harmonic and reactive currents injected in the grid. This means that the inverter output current must be sinusoidal and in phase with the AC supply voltage (PFC). To this end, a nonlinear state-feedback control is developed, based on the average nonlinear model of the whole controlled system. This control strategy involves backstepping approach, Lyapunov stability and other tools from theory of linear systems. The proposed state-feedback control strategy is tested by numerical simulation which shows that the developed controller reaches its objectives</span>


2015 ◽  
Vol 789-790 ◽  
pp. 658-664 ◽  
Author(s):  
Muhammad Faisal ◽  
Mohsin Jamil ◽  
Usman Rashid ◽  
Syed Omer Gilani ◽  
Yasar Ayaz ◽  
...  

In this paper, we propose a novel dual-loop control scheme (DLCS). We did not see such investigation of DLCS in the previous research work. DLCS scheme is a combination of classical PID and advanced state feedback control techniques. The proposed technique is used to control swing angle and trolley position of a 3DOF crane. Extensive simulations have been carried out using MATLAB / Simulink and practically validated on a Quanser 3DOF crane system. Experimental results indicate that the proposed DLCS control scheme improves crane operation by damping the payload oscillations. The scheme also smoothen the trolley motion. Our suggested technique provides better performance in terms of payload oscillations comparing to the classical PID.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1146
Author(s):  
Călin-Adrian Popa ◽  
Eva Kaslik

This paper studies fractional-order neural networks with neutral-type delay, leakage delay, and time-varying delays. A sufficient condition which ensures the finite-time synchronization of these networks based on a state feedback control scheme is deduced using the generalized Gronwall–Bellman inequality. Then, a different state feedback control scheme is employed to realize the finite-time Mittag–Leffler synchronization of these networks by using the fractional-order extension of the Lyapunov direct method for Mittag–Leffler stability. Two numerical examples illustrate the feasibility and the effectiveness of the deduced sufficient criteria.


Sign in / Sign up

Export Citation Format

Share Document