scholarly journals Design of integer‐ N PLL frequency synthesiser for E‐band frequency for high phase noise performance in 5G communication systems

IET Networks ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 23-28
Author(s):  
Zakia Berber ◽  
Samir Kameche ◽  
Elhadj Benkhelifa
Circuit World ◽  
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Emad Ebrahimi

Purpose Multiphase and quadrature voltage-controlled oscillators (QVCOs) play key roles in modern communication systems and their phase noise performance affects the performance of the overall system. Different studies are devoted to efficient quadrature signals generation. This paper aims to present a new low-phase noise superharmonic injection-locked QVCO. Design/methodology/approach The proposed QVCO is comprised of two identical inductor-capacitor circuit (LC)-voltage-controlled oscillators (VCOs) in which second harmonics, with 180° phase shift, are injected from one core VCO to the gate of tail current source of the other VCO via a coupling capacitor. Using second harmonics with high amplitude will switch the tail from the inversion to the accumulation, and therefore, flicker noise is reduced. Also, because of the use of lossless and noiseless coupling elements, that is, coupling capacitors, and also because of the existence of an inherent high-pass filter, the proposed LC-QVCO has a good phase noise performance. Findings The introduced technique is designed and simulated in a commercial 0.18 µm radio frequency complementary metal oxide semiconductor (RF-CMOS) technology and 10 dB improvement of close-in phase noise is achieved (compared to the conventional method). Simulation results show that the phase noise of the proposed QVCO is −130.3 dBc/Hz at 3 MHz offset from 5.76 GHz center frequency, while the total direct current (DC) current drawn from a 0.9-V power supply is 4.25 mA (figure of merit = −190.2 dBc). Monte Carlo simulation results show that the figure of merit of the circuit has a Gaussian distribution with mean value and standard deviation of −189.97 dBc and 0.183, respectively. Originality/value This technique provides a new simple but efficient superharmonic coupling and noise shaping method that reduces close-in phase noise of superharmonic multiphase VCOs by switching of tail transistors with 2 ω0 (second harmonic of oscillation frequency). No extra devices such as area-consuming transformer or additional power-hungry oscillator are used for coupling.


2012 ◽  
Vol 496 ◽  
pp. 527-533
Author(s):  
Na Bai ◽  
Hong Gang Zhou ◽  
Qiu Lei Wu ◽  
Chun Yu Peng

In this paper, ring oscillator phase noise caused by power supply noise (PSN) with deterministic frequency is analyzed. Results show that phase noise caused by deterministic noise is only an impulse series. Compared with the jitter caused by PSN, the phase noise caused by PSN with deterministic frequency contributes considerably less to total phase noise performance. To verify the analysis method, a CMOS ring oscillator is designed and fabricated using SMIC 0.13 µm CMOS process. Comparisons between the analytical results and measurements prove the accuracy of the proposed method


2018 ◽  
Vol 218 ◽  
pp. 03015 ◽  
Author(s):  
Ahmad Firdausi ◽  
Galang Hakim ◽  
Mudrik Alaydrus

One of the technologies that has wireless application nowadays was 5G mobile communication.This paper presents the designing of a Tri-band microstrip antenna for targeting 5G broadband communications, This element antenna has 3x3 rectangular patches with feeding line structures are branched. With the use of double feeding proximity coupling structure, we intend to maximize antenna bandwidth, therefore the antenna cover range tri-band frequency from 40 GHz to 70 GHz. The reflection factor comparation between simulation and measurement has a minimum with respective frequency at 45.3 GHz, 57 GHz, and 66 GHz. The total measurement bandwith 11.5 Ghz. With this combination tecnique, the proposed antenna is a promising candidate for 5G communication systems.


1997 ◽  
pp. 345-350
Author(s):  
R. Kojouharov ◽  
I. Angelov ◽  
A. Yanev ◽  
B. Todorov ◽  
R. Chakalov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document