scholarly journals Improved harmonic injection pulse-width modulation variable frequency triangular carrier scheme for multilevel inverters

2020 ◽  
Vol 13 (14) ◽  
pp. 3146-3154
Author(s):  
Mohammad Sadegh Orfi Yeganeh ◽  
Mohammad Sarvi ◽  
Frede Blaabjerg ◽  
Pooya Davari
2021 ◽  
Vol 309 ◽  
pp. 01120
Author(s):  
Sameera Shaik ◽  
Suresh Kumar Tummala ◽  
D Srinivasa Rao

Nowadays, the multilevel inverter has gained huge attention and has become more popularized in high voltage and high-power applications with low harmonics. As the number of output voltage increases, the harmonic content of the output voltage waveform decreases. In this paper, a comparison of cascaded H-bridge and cross-switched multilevel inverters for 7, 9, 15, 21 levels will be carried out. The different control techniques that will be used for carrying out comparisons are space vector pulse width modulation (SPVPWM), sinusoidal pulse width modulation (SPWM), and third harmonic injection pulse width modulation (THI-PWM) respectively. Here, the seven-level inverter is discussed mainly and can be extended to any number of levels.


Author(s):  
Yasir M.Y. Ameen ◽  
Bashar A. Fadheel ◽  
Ali J Mahdi

<span>Nowadays application of advanced power electronic technology enables producing an AC supply with a phase number higher than three-phase. Five-phase voltage source inverters (5ph-VSI) have been used in advanced power electronic drives to improve the reliability of the drive system and to boost the power capability of the converter as well as to their other inherent merits. This paper shows the mathematical analysis and simulation of the third harmonic injection pulse width modulation (THI-PWM) 5ph-VSI connected with inductive load in three scenarios i.e. star, Pentagon and pentacle. The presented THI-PWM technique for 5ph-VSI aims to increase the inverter fundamental voltage and hence to maximize the utilization of the DC bus without causing over-modulation. The simulation results are compared with typical sinusoidal pulse width modulation (SPWM) and the 10-step mode operation. The proposed scheme may be considered as a compromise case between the two reference cases;  as low harmonic components compared with 10-step mode operation and a high utilization factor compared with SPWM.</span>


2019 ◽  
Vol 12 (11) ◽  
pp. 2865-2872 ◽  
Author(s):  
Antonio Ruiz‐Gonzalez ◽  
Mario Meco‐Gutierrez ◽  
Juan‐Ramon Heredia‐Larrubia ◽  
Francisco Perez‐Hidalgo ◽  
Francisco Vargas‐Merino

Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 263
Author(s):  
Manyuan Ye ◽  
Wei Ren ◽  
Qiwen Wei ◽  
Guizhi Song ◽  
Zhilin Miao

Asymmetric Cascaded H-bridge (ACHB) level inverters can output more voltage waveforms with fewer cascaded units while ensuring the quality of output voltage waveforms, so they have attracted more and more attention. Taking the topology of Type-III asymmetric CHB multilevel inverters as the research object, a Modified Hybrid Frequency Pulse Width Modulation (MHF-PWM) strategy is proposed in this paper. This modulation strategy overcomes the local overshoot of low-voltage unit in the presence of traditional Hybrid Frequency Pulse Width Modulation (HF-PWM), thus completely eliminating the low frequency harmonics in the output voltage waveform of Type-III ACHB nine-level inverters, and the Total Harmonic Distortion (THD) of output line voltage of the modulation strategy is lower than that of PS-PWM strategy in the whole modulation degree, which effectively improves the quality waveform of the output line voltage. At the same time, the strategy can also improve the problems of current backflow and energy feedback caused by the high-voltage unit pouring current to the low-voltage unit, thereby reducing the imbalance of the output power of the high-voltage and low-voltage units. Finally, the Matlab/Simulink simulation model and experimental platform are established to verify the validity and practicality of the modulation strategy.


Sign in / Sign up

Export Citation Format

Share Document