Design, analysis and experimental verification of a high voltage gain and high‐efficiency DC–DC converter for photovoltaic applications

2020 ◽  
Vol 14 (10) ◽  
pp. 1699-1709 ◽  
Author(s):  
Waqas Hassan ◽  
Yuezhu Lu ◽  
Majid Farhangi ◽  
Dylan Dah‐Chuan Lu ◽  
Weidong Xiao
Author(s):  
G.Vijaykumar and Dr.V.Geetha

A high voltage gain modified SEPIC converter is proposed in this paper. This proposed converter has many advantages i.e., high output voltage, lower voltage stress, high efficiency, voltage gain is high without any coupled inductor and transformer, continuous input current. Thus, there is no overshoot voltage at turn-off process for switches. By using single switches, the CCM mode operation can be easily controlled by this converter, so control system is simple and also wide output values is obtained only by modifying the duty cycle. This modified converter has lower components than conventional converter. The operating modes and design of modified converter are discussed. The output power of this converter is 6 watts. By this converter, this converter capable of developing the two and half times of input voltage. The PV system also used this converter to develop high voltage gain. This high voltage gain is achieved by using MATLAB/SIMULIMK platform.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1932
Author(s):  
Navid Salehi ◽  
Herminio Martínez-García ◽  
Guillermo Velasco-Quesada

To improve the voltage gain of step-up converters, the cascaded technique is considered as a possible solution in this paper. By considering the concept of cascading two Z-source networks in a conventional boost converter, the proposed topology takes the advantages of both impedance source and cascaded converters. By applying some modifications, the proposed converter provides high voltage gain while the voltage stress of the switch and diodes is still low. Moreover, the low input current ripple of the converter makes it absolutely appropriate for photovoltaic applications in expanding the lifetime of PV panels. After analyzing the operation principles of the proposed converter, we present the simulation and experimental results of a 100 W prototype to verify the proposed converter performance.


2018 ◽  
Vol 225 ◽  
pp. 04002
Author(s):  
Arunkumari Thiyagu ◽  
V. Indragandhi ◽  
Ramani Kannan

This manuscript proposes a novel single switch converter which attains high voltage gain using P and O algorithm. The proposed converter is multilevel with voltage tripler technique. Here the output voltage gain attained is 11 times than the input source. The voltage ripple attained is less compared to other models. The main advantage of the converter is high efficiency, reduced switch loss, high gain and reduction in ripple. The converter attains efficiency of 97.3% at full load condition. The proposed converter is analysed by both Simulink MATALAB and Hardware prototype.


2014 ◽  
Vol 63 (3) ◽  
pp. 393-407 ◽  
Author(s):  
Adam Kawa ◽  
Adam Penczek ◽  
Stanisław Piróg

Abstract The paper treats about main problems of one phase DC-AC microinverters that allow single solar cell to be joined with the grid. One of the issues is to achieve high voltage gain with high efficiency in DC circuit, which is necessary for proper operation of inverter. The operating principles, results of practical implementation and investigations on boost-flyback converter, which meets mentioned demands, are presented. (high step-up DC-DC boost-flyback converter for single phase grid microinverter)


Author(s):  
A Sowmya ◽  
Dr. D Murali

The resonant converters have attracted a lot of attention because of their high efficiency and low switching losses. This paper presents the analysis of a high voltage gain non-isolated step-up DC-DC converter topology using resonant technology. The proposed converter configuration has reduced number of power semiconductor switches compared to the existing isolated converter topology having four semiconductor switches. The proposed topology employs capacitor-inductor-capacitor (C-L-C) resonant circuit configuration. The size of the proposed converter and the losses in the converter are greatly reduced. Both the converters with resonant components are simulated in Matlab/Simulink platform to validate their performance. The time-domain simulation results demonstrate that the proposed non-isolated converter gives improved voltage gain compared to the existing two-stage isolated resonant DC-DC converter.


Sign in / Sign up

Export Citation Format

Share Document