scholarly journals A combination of feature extraction methods and deep learning for brain tumour classification

2021 ◽  
Author(s):  
Masoumeh Siar ◽  
Mohammad Teshnehlab
2021 ◽  
Vol 7 (5) ◽  
pp. 89
Author(s):  
George K. Sidiropoulos ◽  
Polixeni Kiratsa ◽  
Petros Chatzipetrou ◽  
George A. Papakostas

This paper aims to provide a brief review of the feature extraction methods applied for finger vein recognition. The presented study is designed in a systematic way in order to bring light to the scientific interest for biometric systems based on finger vein biometric features. The analysis spans over a period of 13 years (from 2008 to 2020). The examined feature extraction algorithms are clustered into five categories and are presented in a qualitative manner by focusing mainly on the techniques applied to represent the features of the finger veins that uniquely prove a human’s identity. In addition, the case of non-handcrafted features learned in a deep learning framework is also examined. The conducted literature analysis revealed the increased interest in finger vein biometric systems as well as the high diversity of different feature extraction methods proposed over the past several years. However, last year this interest shifted to the application of Convolutional Neural Networks following the general trend of applying deep learning models in a range of disciplines. Finally, yet importantly, this work highlights the limitations of the existing feature extraction methods and describes the research actions needed to face the identified challenges.


2020 ◽  
Vol 10 (20) ◽  
pp. 7068
Author(s):  
Minh Tuan Pham ◽  
Jong-Myon Kim ◽  
Cheol Hong Kim

Recent convolutional neural network (CNN) models in image processing can be used as feature-extraction methods to achieve high accuracy as well as automatic processing in bearing fault diagnosis. The combination of deep learning methods with appropriate signal representation techniques has proven its efficiency compared with traditional algorithms. Vital electrical machines require a strict monitoring system, and the accuracy of these machines’ monitoring systems takes precedence over any other factors. In this paper, we propose a new method for diagnosing bearing faults under variable shaft speeds using acoustic emission (AE) signals. Our proposed method predicts not only bearing fault types but also the degradation level of bearings. In the proposed technique, AE signals acquired from bearings are represented by spectrograms to obtain as much information as possible in the time–frequency domain. Feature extraction and classification processes are performed by deep learning using EfficientNet and a stochastic line-search optimizer. According to our various experiments, the proposed method can provide high accuracy and robustness under noisy environments compared with existing AE-based bearing fault diagnosis methods.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1736 ◽  
Author(s):  
Ikhtiyor Majidov ◽  
Taegkeun Whangbo

Single-trial motor imagery classification is a crucial aspect of brain–computer applications. Therefore, it is necessary to extract and discriminate signal features involving motor imagery movements. Riemannian geometry-based feature extraction methods are effective when designing these types of motor-imagery-based brain–computer interface applications. In the field of information theory, Riemannian geometry is mainly used with covariance matrices. Accordingly, investigations showed that if the method is used after the execution of the filterbank approach, the covariance matrix preserves the frequency and spatial information of the signal. Deep-learning methods are superior when the data availability is abundant and while there is a large number of features. The purpose of this study is to a) show how to use a single deep-learning-based classifier in conjunction with BCI (brain–computer interface) applications with the CSP (common spatial features) and the Riemannian geometry feature extraction methods in BCI applications and to b) describe one of the wrapper feature-selection algorithms, referred to as the particle swarm optimization, in combination with a decision tree algorithm. In this work, the CSP method was used for a multiclass case by using only one classifier. Additionally, a combination of power spectrum density features with covariance matrices mapped onto the tangent space of a Riemannian manifold was used. Furthermore, the particle swarm optimization method was implied to ease the training by penalizing bad features, and the moving windows method was used for augmentation. After empirical study, the convolutional neural network was adopted to classify the pre-processed data. Our proposed method improved the classification accuracy for several subjects that comprised the well-known BCI competition IV 2a dataset.


Author(s):  
G. Rama Janani

The paper is based on classification of respiratory illness like covid 19 and pneumonia by using deep learning. The symptoms of COVID-19 and pneumonia are similar. Due to this, it is often difficult to identify what is causing your condition without being tested for COVID-19 or other respiratory infections. To find out how COVID-19 and pneumonia differs from one another, this paper presents that a novel Convolutional Neural Network in Tensor Flow and Keras based Covid-19 pneumonia classification. The proposed system supported implements CNN using Pneumonia images to classify the Covid-19, normal, pneumonia. The knowledge from these studies can potentially help in diagnosis of the concerned disease. It is predicted that the success of the anticipated results will increase if the CNN method is supported by adding extra feature extraction methods for classifying covid-19 and pneumonia successfully thereby improving the efficacy and potential of using deep CNN to pictures.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Fanlin Shen ◽  
Siyi Cheng ◽  
Zhu Li ◽  
Keqiang Yue ◽  
Wenjun Li ◽  
...  

Obstructive sleep apnea-hypopnea syndrome (OSAHS) is extremely harmful to the human body and may cause neurological dysfunction and endocrine dysfunction, resulting in damage to multiple organs and multiple systems throughout the body and negatively affecting the cardiovascular, kidney, and mental systems. Clinically, doctors usually use standard PSG (Polysomnography) to assist diagnosis. PSG determines whether a person has apnea syndrome with multidimensional data such as brain waves, heart rate, and blood oxygen saturation. In this paper, we have presented a method of recognizing OSAHS, which is convenient for patients to monitor themselves in daily life to avoid delayed treatment. Firstly, we theoretically analyzed the difference between the snoring sounds of normal people and OSAHS patients in the time and frequency domains. Secondly, the snoring sounds related to apnea events and the nonapnea related snoring sounds were classified by deep learning, and then, the severity of OSAHS symptoms had been recognized. In the algorithm proposed in this paper, the snoring data features are extracted through the three feature extraction methods, which are MFCC, LPCC, and LPMFCC. Moreover, we adopted CNN and LSTM for classification. The experimental results show that the MFCC feature extraction method and the LSTM model have the highest accuracy rate which was 87% when it is adopted for binary-classification of snoring data. Moreover, the AHI value of the patient can be obtained by the algorithm system which can determine the severity degree of OSAHS.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4838
Author(s):  
Philip Gouverneur ◽  
Frédéric Li ◽  
Wacław M. Adamczyk ◽  
Tibor M. Szikszay ◽  
Kerstin Luedtke ◽  
...  

While even the most common definition of pain is under debate, pain assessment has remained the same for decades. But the paramount importance of precise pain management for successful healthcare has encouraged initiatives to improve the way pain is assessed. Recent approaches have proposed automatic pain evaluation systems using machine learning models trained with data coming from behavioural or physiological sensors. Although yielding promising results, machine learning studies for sensor-based pain recognition remain scattered and not necessarily easy to compare to each other. In particular, the important process of extracting features is usually optimised towards specific datasets. We thus introduce a comparison of feature extraction methods for pain recognition based on physiological sensors in this paper. In addition, the PainMonit Database (PMDB), a new dataset including both objective and subjective annotations for heat-induced pain in 52 subjects, is introduced. In total, five different approaches including techniques based on feature engineering and feature learning with deep learning are evaluated on the BioVid and PMDB datasets. Our studies highlight the following insights: (1) Simple feature engineering approaches can still compete with deep learning approaches in terms of performance. (2) More complex deep learning architectures do not yield better performance compared to simpler ones. (3) Subjective self-reports by subjects can be used instead of objective temperature-based annotations to build a robust pain recognition system.


2016 ◽  
Author(s):  
Xiaoqian Liu ◽  
Tingshao Zhu

Due to the rapid development of information technology, Internet has become part of everyday life gradually. People would like to communicate with friends to share their opinions on social networks. The diverse social network behavior is an ideal users' personality traits reflection. Existing behavior analysis methods for personality prediction mostly extract behavior attributes with heuristic. Although they work fairly well, but it is hard to extend and maintain. In this paper, for personality prediction, we utilize deep learning algorithm to build feature learning model, which could unsupervised extract Linguistic Representation Feature Vector (LRFV) from text published on Sina Micro-blog actively. Compared with other feature extraction methods, LRFV, as an abstract representation of Micro-blog content, could describe use's semantic information more objectively and comprehensively. In the experiments, the personality prediction model is built using linear regression algorithm, and different attributes obtained through different feature extraction methods are taken as input of prediction model respectively. The results show that LRFV performs more excellently in micro-blog behavior description and improve the performance of personality prediction model.


2016 ◽  
Author(s):  
Xiaoqian Liu ◽  
Tingshao Zhu

Due to the rapid development of information technology, Internet has become part of everyday life gradually. People would like to communicate with friends to share their opinions on social networks. The diverse social network behavior is an ideal users' personality traits reflection. Existing behavior analysis methods for personality prediction mostly extract behavior attributes with heuristic. Although they work fairly well, but it is hard to extend and maintain. In this paper, for personality prediction, we utilize deep learning algorithm to build feature learning model, which could unsupervised extract Linguistic Representation Feature Vector (LRFV) from text published on Sina Micro-blog actively. Compared with other feature extraction methods, LRFV, as an abstract representation of Micro-blog content, could describe use's semantic information more objectively and comprehensively. In the experiments, the personality prediction model is built using linear regression algorithm, and different attributes obtained through different feature extraction methods are taken as input of prediction model respectively. The results show that LRFV performs more excellently in micro-blog behavior description and improve the performance of personality prediction model.


Sign in / Sign up

Export Citation Format

Share Document