scholarly journals Simplified approach of maximum electric field distribution on the ground near HVAC–HVDC shared tower transmission lines

2018 ◽  
Vol 2018 (17) ◽  
pp. 1851-1854 ◽  
Author(s):  
Fengnyu Xiao ◽  
Jianxing Yan ◽  
Bo Zhang ◽  
Yanjie Wang
2018 ◽  
Vol 7 (3.36) ◽  
pp. 127 ◽  
Author(s):  
Nishanthi Sunthrasakaran ◽  
Nor Akmal Mohd Jamail ◽  
Qamarul Ezani Kamarudin ◽  
Sujeetha Gunabalan

The most important aspect influencing the circumstance and characteristics of electrical discharges is the distribution of electric field in the gap of electrodes. The study of discharge performance requires details on the variation of maximum electric field around the electrode. In electrical power system, the insulation of high voltage power system usually subjected with high electric field. The high electric field causes the degradation performance of insulation and electrical breakdown start to occur. Generally, the standard sphere gaps widely used for protective device in electrical power equipment. This project is study about the electric field distribution and current density for different electrode configuration with XLPE barrier. Hence, the different electrode configuration influences the electric field distribution. This project mainly involves the simulation in order to evaluate the maximum electric field for different electrode configuration. Finite Element Method (FEM) software has been used in this project to perform the simulation. This project also discusses the breakdown characteristics of the XLPE. The accurate evaluation of electric field distribution and maximum electric field is an essential for the determination of discharge behavior of high voltage apparatus and components. The degree of uniformity is very low for pointed rod-plane when compared to other two electrode configurations. The non- uniform electric distribution creates electrical stress within the surface of dielectric barrier. As a conclusion, when the gap distance between the electrodes increase the electric field decrease.  


2012 ◽  
Vol 516-517 ◽  
pp. 1517-1520
Author(s):  
Jian Xun Hu ◽  
Gong Da Zhang ◽  
Hong Yu Zhang ◽  
Xiao Qin Zhang

Using the finite element analysis, this work analyzed the electric field distribution of 220kV transmission steel tower with double-circuit and composite material transmission tower with the same size, and compared the electric field effect of two materials transmission tower for surroundings. And this work compared the vertical and axial electric field distribution along transmission line of the two materials transmission tower. The results indicate the composite material tower can improve the environment of electric field near the transmission lines.


2021 ◽  
Vol 6 (1) ◽  
pp. 21-30
Author(s):  
Ragaleela Dalapati Rao ◽  
Padmanabha Raju Chinda ◽  
Meduri Kiran

The performance of insulator strings in transmission lines can be improved by corona rings owing to their electric field grading property. The insulation performance of the string depends on the corona ring parameter settings. In this study, the design of a corona ring for a 400 kV non-ceramic overhead line insulator is presented. Two parameters were altered during the investigation, ring measurement (R) and ring tube breadth (r) while maintaining a constant ring height (h). Based on electric field distribution, the proposed composite insulators were compared with glass insulators. Simulation studies were performed for the insulator strings, including corona rings with different design parameters. The corona discharge and optimal configuration results were analyzed, and it was found that the electric field was lower with composite insulators.


Sign in / Sign up

Export Citation Format

Share Document