scholarly journals MOLPOP-CEP: an exact, fast code for multi-level systems

2018 ◽  
Vol 616 ◽  
pp. A131 ◽  
Author(s):  
Andrés Asensio Ramos ◽  
Moshe Elitzur

We present MOLPOP-CEP, a universal line transfer code that allows the exact calculation of multi-level line emission from a slab with variable physical conditions for any arbitrary atom or molecule for which atomic data exist. The code includes error control to achieve any desired level of accuracy, providing full confidence in its results. Publicly available, MOLPOP-CEP employs our recently developed coupled escape probability (CEP) technique, whose performance exceeds other exact methods by orders of magnitude. The program also offers the option of an approximate solution with different variants of the familiar escape probability method. As an illustration of the MOLPOP-CEP capabilities we present an exact calculation of the Spectral Line Energy Distribution (SLED) of the CO molecule and compare it with escape probability results. We find that the popular large-velocity gradient (LVG) approximation is unreliable at large CO column densities. Providing a solution of the multi-level line transfer problem at any prescribed level of accuracy, MOLPOP-CEP is removing any doubts about the validity of its final results.

Author(s):  
O. Kuzmanovska ◽  
O. Atanacković ◽  
M. Faurobert
Keyword(s):  

2017 ◽  
Vol 608 ◽  
pp. A144 ◽  
Author(s):  
C. Yang ◽  
A. Omont ◽  
A. Beelen ◽  
Y. Gao ◽  
P. van der Werf ◽  
...  

We present the IRAM-30 m observations of multiple-J CO (Jup mostly from 3 up to 8) and [C I](3P2 → 3P1) ([C I](2–1) hereafter) line emission in a sample of redshift ~2–4 submillimeter galaxies (SMGs). These SMGs are selected among the brightest-lensed galaxies discovered in the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS). Forty-seven CO lines and 7 [C I](2–1) lines have been detected in 15 lensed SMGs. A non-negligible effect of differential lensing is found for the CO emission lines, which could have caused significant underestimations of the linewidths, and hence of the dynamical masses. The CO spectral line energy distributions (SLEDs), peaking around Jup ~ 5–7, are found to be similar to those of the local starburst-dominated ultra-luminous infrared galaxies and of the previously studied SMGs. After correcting for lensing amplification, we derived the global properties of the bulk of molecular gas in the SMGs using non-LTE radiative transfer modelling, such as the molecular gas density nH2 ~ 102.5–104.1 cm-3 and the kinetic temperature Tk  ~ 20–750 K. The gas thermal pressure Pth ranging from~105 K cm-3 to 106 K cm-3 is found to be correlated with star formation efficiency. Further decomposing the CO SLEDs into two excitation components, we find a low-excitation component with nH2 ~ 102.8–104.6 cm-3 and Tk  ~ 20–30 K, which is less correlated with star formation, and a high-excitation one (nH2 ~ 102.7–104.2 cm-3, Tk  ~ 60–400 K) which is tightly related to the on-going star-forming activity. Additionally, tight linear correlations between the far-infrared and CO line luminosities have been confirmed for the Jup ≥ 5 CO lines of these SMGs, implying that these CO lines are good tracers of star formation. The [C I](2–1) lines follow the tight linear correlation between the luminosities of the [C I](2–1) and the CO(1–0) line found in local starbursts, indicating that [C I] lines could serve as good total molecular gas mass tracers for high-redshift SMGs as well. The total mass of the molecular gas reservoir, (1–30) × 1010M⊙, derived based on the CO(3–2) fluxes and αCO(1–0) = 0.8 M⊙ ( K km s-1 pc2)-1, suggests a typical molecular gas depletion time tdep ~ 20–100 Myr and a gas to dust mass ratio δGDR ~ 30–100 with ~20%–60% uncertainty for the SMGs. The ratio between CO line luminosity and the dust mass L′CO/Mdust appears to be slowly increasing with redshift for high-redshift SMGs, which need to be further confirmed by a more complete SMG sample at various redshifts. Finally, through comparing the linewidth of CO and H2O lines, we find that they agree well in almost all our SMGs, confirming that the emitting regions of the CO and H2O lines are co-spatially located.


1994 ◽  
Vol 154 ◽  
pp. 323-339
Author(s):  
E. H. Avrett ◽  
E. S. Chang ◽  
R. Loeser

The emission lines of Mg I at 7.4, 12.2, and 12.3 μm are now known to be formed in the upper photosphere; the line emission is due to collisional coupling of higher levels with the continuum together with radiative depopulation of lower levels. These combined effects cause the line source functions of high-lying transitions to exceed the corresponding Planck functions. However, there are uncertainties in a) the relevant atomic data, particularly the collisional rates and ultraviolet photoionization rates, and b) the sensitivity of the calculated results to changes in atmospheric temperature and density. These uncertainties are examined by comparing twelve calculated Mg I line profiles in the range 2.1-12.3 μm with ATMOS satellite observations. We show results based on different rates, and using different atmospheric models representing a range of dark and bright spatial features. The calculated Mg profiles are found to be relatively insensitive to atmospheric model changes, and to depend critically on the choice of collisional and photoionization rates. We find better agreement with the observations using collision rates from van Regemorter (1962) rather than from Seaton (1962). We also compare twelve calculated hydrogen profiles in the range 2.2-12.4 μm with ATMOS observations. The available rates and cross sections for hydrogen seem adequate to account for the observed profiles, while the calculated lines are highly sensitive to atmospheric model changes. These lines are perhaps the best available diagnostics of the temperature and density structure of the photosphere and low chromosphere. Further calculations based on these infrared hydrogen lines should lead to greatly improved models of the solar atmosphere.


2010 ◽  
pp. 81-89 ◽  
Author(s):  
O. Kuzmanovska-Barandovska

In this paper some iteration factors families introduced previously to solve the pure line transfer problem are generalized to the case when the back- ground continuum is taken into account. The convergence properties of these factors are discussed when they are applied to the solution of the two-level atom line transfer problem in a constant and variable property media.


Sign in / Sign up

Export Citation Format

Share Document