scholarly journals K2-141 b

2018 ◽  
Vol 612 ◽  
pp. A95 ◽  
Author(s):  
O. Barragán ◽  
D. Gandolfi ◽  
F. Dai ◽  
J. Livingston ◽  
C. M. Persson ◽  
...  

We report on the discovery of K2-141 b (EPIC 246393474 b), an ultra-short-period super-Earth on a 6.7 h orbit transiting an active K7 V star based on data from K2 campaign 12. We confirmed the planet’s existence and measured its mass with a series of follow-up observations: seeing-limited MuSCAT imaging, NESSI high-resolution speckle observations, and FIES and HARPS high-precision radial-velocity monitoring. K2-141 b has a mass of 5.31 ± 0.46 M⊕ and radius of 1.54−0.09+0.10 R⊕, yielding a mean density of 8.00−1.45+1.83 g cm−3 and suggesting a rocky-iron composition. Models indicate that iron cannot exceed ~70% of the total mass. With an orbital period of only 6.7 h, K2-141 b is the shortest-period planet known to date with a precisely determined mass.

2017 ◽  
Vol 598 ◽  
pp. L7 ◽  
Author(s):  
P. Kervella ◽  
F. Thévenin ◽  
C. Lovis

Proxima and α Centauri AB have almost identical distances and proper motions with respect to the Sun. Although the probability of such similar parameters is, in principle, very low, the question as to whether they actually form a single gravitationally bound triple system has been open since the discovery of Proxima one century ago. Owing to HARPS high-precision absolute radial velocity measurements and the recent revision of the parameters of the α Cen pair, we show that Proxima and α Cen are gravitationally bound with a high degree of confidence. The orbital period of Proxima is ≈ 550 000 yr. With an eccentricity of 0.50+0.08-0.09, Proxima comes within 4.3+1.1-0.9 kau of α Cen at periastron, and is currently close to apastron (13.0+0.3-0.1 kau). This orbital motion may have influenced the formation or evolution of the recently discovered planet orbiting Proxima, as well as circumbinary planet formation around α Cen.


2020 ◽  
Vol 639 ◽  
pp. A35 ◽  
Author(s):  
S. Hojjatpanah ◽  
M. Oshagh ◽  
P. Figueira ◽  
N. C. Santos ◽  
E. M. Amazo-Gómez ◽  
...  

Context. Characterizing the relation between stellar photometric variability and radial velocity (RV) jitter can help us to better understand the physics behind these phenomena. The current and upcoming high precision photometric surveys such as TESS, CHEOPS, and PLATO will provide the community with thousands of new exoplanet candidates. As a consequence, the presence of such a correlation is crucial in selecting the targets with the lowest RV jitter for efficient RV follow-up of exoplanetary candidates. Studies of this type are also crucial to design optimized observational strategies to mitigate RV jitter when searching for Earth-mass exoplanets. Aims. Our goal is to assess the correlation between high-precision photometric variability measurements and high-precision RV jitter over different time scales. Methods. We analyze 171 G, K, and M stars with available TESS high precision photometric time-series and HARPS precise RVs. We derived the stellar parameters for the stars in our sample and measured the RV jitter and photometric variability. We also estimated chromospheric Ca II H & K activity indicator log(RHK′), v sin i, and the stellar rotational period. Finally, we evaluate how different stellar parameters and an RV sampling subset can have an impact on the potential correlations. Results. We find a varying correlation between the photometric variability and RV jitter as function of time intervals between the TESS photometric observation and HARPS RV. As the time intervals of the observations considered for the analysis increases, the correlation value and significance becomes smaller and weaker, to the point that it becomes negligible. We also find that for stars with a photometric variability above 6.5 ppt the correlation is significantly stronger. We show that such a result can be due to the transition between the spot-dominated and the faculae-dominated regime. We quantified the correlations and updated the relationship between chromospheric Ca II H & K activity indicator log(RHK′) and RV jitter.


1999 ◽  
Vol 170 ◽  
pp. 113-120
Author(s):  
William D. Cochran ◽  
Artie P. Hatzes

AbstractSeveral different high-precision radial-velocity programs are now underway at The University of Texas. This paper discusses the aspects of these programs that are related to the problem of detection of extrasolar planetary systems. This includes the McDonald Observatory Planetary Search program on the McDonald 2.7-m Harlan Smith Telescope, an accompanying program of high-resolution stellar line profile measurement, the European Southern Observatory planetary search program, the Keck Hyades survey, and the Hobby∙Eberly Telescope planet surveys. Here, we summarize each of these programs, and present recent results from each.


2008 ◽  
Vol 4 (S253) ◽  
pp. 129-139 ◽  
Author(s):  
François Bouchy ◽  
Claire Moutou ◽  
Didier Queloz ◽  

AbstractRadial Velocity follow-up is essential to establish or exclude the planetary nature of a transiting companion as well as to accurately determine its mass. Here we present some elements of an efficient Doppler follow-up strategy, based on high-resolution spectroscopy, devoted to the characterization of transiting candidates. Some aspects and results of the radial velocity follow-up of the CoRoT space mission are presented in order to illustrate the strategy used to deal with the zoo of transiting candidates.


2012 ◽  
Vol 8 (S293) ◽  
pp. 68-70
Author(s):  
Duncan J. Wright ◽  
Christopher G. Tinney ◽  
Robert A. Wittenmyer

AbstractDetecting the small velocity amplitudes (≤ 10 m/s) produced by habitable zone rocky planets around M Dwarfs requires radial velocity precisions of a few m s−1. However, an iodine absorption cell, commonly used as a high precision wavelength reference on non-stabilised spectrographs, is not efficient for very red and faint objects like M Dwarfs. Instead, arc lamps have to be used. With the exception of the ultra-stabilised HARPS spectrograph, achieving ~m s−1 calibration with arc lamps has not been possible because typical spectrographs experience drifts of several hundred m s−1 due to local atmospheric changes in pressure and temperature. We outline and present results from an innovative differential wavelength calibration method that enables ~m s−1 precision from non-stabilised, high-resolution spectrographs. This technique allows the detection of rocky planets with radial velocity amplitudes of a few m s−1.


2008 ◽  
Vol 4 (S253) ◽  
pp. 462-465
Author(s):  
I. Boisse ◽  
C. Moutou ◽  
A. Vidal-Madjar ◽  
F. Bouchy ◽  
F. Pont ◽  
...  

AbstractExoplanet search programs need to study how to disentangle radial-velocity (RV) variations due to Doppler motion and the noise induced by stellar activity. We monitored the active K2V HD 189733 with the high-resolution SOPHIE spectrograph (OHP, France). We refined the orbital parameters of HD 189733b and put limitations on the eccentricity and on a long-term velocity gradient. We subtracted the orbital motion of the planet and compared the variability of activity spectroscopic indices (HeI, Hα, Ca II H&K lines) to the evolution of the RV residuals and the shape of spectral lines. All are in agreement with an active stellar surface in rotation. We used such correlations to correct for the RV jitter due to stellar activity. This results in achieving a high precision on the orbital parameters, with a semi-amplitude: K=200.56±0.88m⋅s−1 and a derived planet mass of MP=1.13±0.03 MJup.


2021 ◽  
Vol 503 (3) ◽  
pp. 4092-4104
Author(s):  
Matthew P Battley ◽  
Michelle Kunimoto ◽  
David J Armstrong ◽  
Don Pollacco

ABSTRACTUp to date planet ephemerides are becoming increasingly important as exoplanet science moves from detecting exoplanets to characterizing their architectures and atmospheres in depth. In this work, ephemerides are updated for 22 Kepler planets and 4 Kepler planet candidates, constituting all Kepler planets and candidates with sufficient signal to noise in the TESS 2 min data set. A purely photometric method is utilized here to allow ephemeris updates for planets even when they do not posses significant radial velocity data. The obtained ephemerides are of very high precision and at least seven years ‘fresher’ than archival ephemerides. In particular, significantly reduced period uncertainties for Kepler-411d, Kepler-538b, and the candidates K00075.01/K00076.01 are reported. O–C diagrams were generated for all objects, with the most interesting ones discussed here. Updated TTV fits of five known multiplanet systems with significant TTVs were also attempted (Kepler-18, Kepler-25, Kepler-51, Kepler-89, and Kepler-396), however these suffered from the comparative scarcity and dimness of these systems in TESS. Despite these difficulties, TESS has once again shown itself to be an incredibly powerful follow-up instrument as well as a planet-finder in its own right. Extension of the methods used in this paper to the 30 min-cadence TESS data and TESS extended mission has the potential to yield updated ephemerides of hundreds more systems in the future.


2004 ◽  
Vol 194 ◽  
pp. 271-271
Author(s):  
B. T. Gänsicke ◽  
S. Araujo-Betancor ◽  
H.-J. Hagen ◽  
E. T. Harlaftis ◽  
S. Kitsionas ◽  
...  

We report follow-up observations of the new pre-cataclysmic variable HS 2237+8154, identified from the Hamburg Quasar Survey. The orbital period derived from ellipsoidal modulation observed in the iR-band as well as from the Hα radial velocity variation is orb = 178.10 ± 0.08 min. We briefly discuss the evolutionary state of this system.


2019 ◽  
Vol 623 ◽  
pp. A104 ◽  
Author(s):  
G. Hébrard ◽  
A. S. Bonomo ◽  
R. F. Díaz ◽  
A. Santerne ◽  
N. C. Santos ◽  
...  

Whereas thousands of transiting giant exoplanets are known today, only a few are well characterized with long orbital periods. Here we present KOI-3680b, a new planet in this category. First identified by the Kepler team as a promising candidate from the photometry of the Kepler spacecraft, we establish here its planetary nature from the radial velocity follow-up secured over 2 yr with the SOPHIE spectrograph at Observatoire de Haute-Provence, France. The combined analysis of the whole dataset allows us to fully characterize this new planetary system. KOI-3680b has an orbital period of 141.2417 ± 0.0001 days, a mass of 1.93 ± 0.20 MJup, and a radius of 0.99 ± 0.07 RJup. It exhibits a highly eccentric orbit (e = 0.50 ± 0.03) around an early G dwarf. KOI-3680b is the transiting giant planet with the longest period characterized so far around a single star; it offers opportunities to extend studies which were mainly devoted to exoplanets close to their host stars, and to compare both exoplanet populations.


2020 ◽  
Vol 642 ◽  
pp. A49 ◽  
Author(s):  
B.-O. Demory ◽  
F. J. Pozuelos ◽  
Y. Gómez Maqueo Chew ◽  
L. Sabin ◽  
R. Petrucci ◽  
...  

We report the discovery and characterisation of a super-Earth and a sub-Neptune transiting the bright (K = 8.8), quiet, and nearby (37 pc) M3V dwarf TOI-1266. We validate the planetary nature of TOI-1266 b and c using four sectors of TESS photometry and data from the newly-commissioned 1-m SAINT-EX telescope located in San Pedro Mártir (México). We also include additional ground-based follow-up photometry as well as high-resolution spectroscopy and high-angular imaging observations. The inner, larger planet has a radius of R = 2.37−0.12+0.16 R⊕ and an orbital period of 10.9 days. The outer, smaller planet has a radius of R = 1.56−0.13+0.15 R⊕ on an 18.8-day orbit. The data are found to be consistent with circular, co-planar and stable orbits that are weakly influenced by the 2:1 mean motion resonance. Our TTV analysis of the combined dataset enables model-independent constraints on the masses and eccentricities of the planets. We find planetary masses of Mp = 13.5−9.0+11.0 M⊕ (<36.8 M⊕ at 2-σ) for TOI-1266 b and 2.2−1.5+2.0 M⊕ (<5.7 M⊕ at 2-σ) for TOI-1266 c. We find small but non-zero orbital eccentricities of 0.09−0.05+0.06 (<0.21 at 2-σ) for TOI-1266 b and 0.04 ± 0.03 (< 0.10 at 2-σ) for TOI-1266 c. The equilibrium temperatures of both planets are of 413 ± 20 and 344 ± 16 K, respectively, assuming a null Bond albedo and uniform heat redistribution from the day-side to the night-side hemisphere. The host brightness and negligible activity combined with the planetary system architecture and favourable planet-to-star radii ratios makes TOI-1266 an exquisite system for a detailed characterisation.


Sign in / Sign up

Export Citation Format

Share Document