scholarly journals Toy model for the acceleration of blazar jets

2018 ◽  
Vol 616 ◽  
pp. A93 ◽  
Author(s):  
I. Liodakis

Context. Understanding the acceleration mechanism of astrophysical jets has been a cumbersome endeavor from both the theoretical and observational perspective. Although several breakthroughs have been achieved in recent years, on all sides, we are still missing a comprehensive model for the acceleration of astrophysical jets. Aims. In this work we attempt to construct a simple toy model that can account for several observational and theoretical results and allow us to probe different aspects of blazar jets usually inaccessible to observations. Methods. We used the toy model and Lorentz factor estimates from the literature to constrain the black hole spin and external pressure gradient distributions of blazars. Results. Our results show that (1) the model can reproduce the velocity, spin and external pressure gradient of the jet in M 87 inferred independently by observations; (2) blazars host highly spinning black holes with 99% of BL Lac objects and 80% of flat spectrum radio quasars having spins a > 0.6; (3) the dichotomy between BL Lac objects and flat spectrum radio quasars could be attributed to their respective accretion rates. Using the results of the proposed model, we estimated the spin and external pressure gradient for 75 blazars.

Author(s):  
Zhiyuan Pei ◽  
Junhui Fan ◽  
Jianghe Yang ◽  
Denis Bastieri

Abstract Blazars are a subclass of active galactic nuclei with extreme observation properties, which is caused by the beaming effect, expressed by a Doppler factor ( $\delta$ ), in a relativistic jet. Doppler factor is an important parameter in the blazars paradigm to indicate all of the observation properties, and many methods were proposed to estimate its value. In this paper, we present a method following Mattox et al. to calculate the lower limit on $\gamma$ -ray Doppler factor ( $\delta_{\gamma}$ ) for 809 selected Fermi/LAT-detected $\gamma$ -ray blazars by adopting the available $\gamma$ -ray and X-ray data. Our sample included 342 flat-spectrum radio quasars (FSRQs) and 467 BL Lac objects (BL Lacs), out of which 507 sources are compiled with available radio core-dominance parameter (R) from our previous study. Our calculation shows that the average values of the lower limit on $\delta_{\gamma}$ for FSRQs and BL Lacs are $\left\langle\delta_{\gamma}|_{\textrm{FSRQ}}\right\rangle = 6.87 \pm 4.07$ and $\left\langle\delta_{\gamma}|_{\textrm{BL\ Lac}}\right\rangle=4.31 \pm 2.97$ , respectively. We compare and discuss our results with those from the literature. We found that the derived lower limit on $\delta_{\gamma}$ for some sources is higher than that from the radio estimation, which could be possibly explained by the jet bending within those blazars. Our results also suggest that the $\gamma$ -ray and radio regions perhaps share the same relativistic effects. The $\gamma$ -ray Doppler factor has been found to be correlated with both the $\gamma$ -ray luminosity and core-dominance parameter, implying that the jet is possibly continuous in the $\gamma$ -ray bands, and R is perhaps an indicator for a beaming effect.


1998 ◽  
Vol 164 ◽  
pp. 171-172
Author(s):  
M. Bondi ◽  
D. Dallacasa ◽  
M. J. M. Marchã ◽  
C. Stanghellini

AbstractWe present first results from a new sample of low radio luminosity flat spectrum radio galaxies.


2020 ◽  
Vol 634 ◽  
pp. A80 ◽  
Author(s):  
Bhoomika Rajput ◽  
C. S. Stalin ◽  
Suvendu Rakshit

We used the data from the Fermi Gamma-ray Space Telescope to characterise the γ-ray flux variability of blazars on month-like time scales. Our sample consists of 1120 blazars of which 481 are flat spectrum radio quasars (FSRQs) and 639 are BL Lac objects (BL Lacs). We generated monthly binned light curves of our sample for a period of approximately nine years from 2008 August to 2017 December and quantified variability by using excess variance (Fvar). On month-like time scales, 371/481 FSRQs are variable (80%), while only about 50% (304/639) of BL Lacs are variable. This suggests that FSRQs are more variable than BL Lac objects. We find a mean Fvar of 0.55 ± 0.33 and 0.47 ± 0.29 for FSRQs and BL Lacs respectively. Large Fvar in FSRQs is also confirmed from the analysis of the ensemble structure function. By Dividing our sample of blazars based on the position of the synchrotron peak in their broad-band spectral energy distribution, we find that the low synchrotron peaked (LSP) sources have the largest mean Fvar value of 0.54 ± 0.32 while the intermediate synchrotron peaked (ISP) and high synchrotron peaked sources have mean Fvar values of 0.45 ± 0.25 and 0.47 ± 0.33 respectively. On month-like time scales, we find FSRQs to show a high duty cycle (DC) of variability of 66% relative to BL Lacs that show a DC of 36%. We find that both the Fvar and time scale of variability (τ) do not correlate with MBH. We note that Fvar is found to be weakly correlated with Doppler factor (δ) and τ is also weakly correlated with δ. Most of the sources in our sample have τ of the order of days, which might be related to processes in the jet. We find marginal difference in the distribution of τ between FSRQs and BL Lacs.


1986 ◽  
Vol 119 ◽  
pp. 59-60
Author(s):  
J V Wall ◽  
I J Danziger ◽  
M Pettini ◽  
R S Warwick ◽  
W Wamsteker

The galaxy identified with the flat-spectrum radio source PKS 2005-489 has a bright stellar nucleus with V ⋍ 13 mag. Optical, UV and X-ray observations indicate variability and power-law continua in each of these wavebands, leading to the conclusion that PKS 2005-489 is one of the brightest BL Lac objects known.


2010 ◽  
Vol 19 (06) ◽  
pp. 831-839 ◽  
Author(s):  
◽  
BENOIT LOTT

The first three months of sky-survey operation with the Large Area Telescope (LAT) on board the Fermi satellite revealed 132 bright sources at |b| > 10° with test statistic greater than 100 (corresponding to about 10σ). Two methods, based on the CGRaBS, CRATES and BZCat catalogs, indicated high-confidence associations of 106 of these sources with known AGNs. This sample is referred to as the LAT Bright AGN Sample (LBAS). It contains two radio galaxies, namely Centaurus A and NGC 1275, and 104 blazars consisting of 58 flat spectrum radio quasars (FSRQs), 42 BL Lac objects, and four blazars with unknown classification. Remarkably, the LBAS includes 10 high-energy-peaked BL Lacs. Only 33 of the sources, plus two at |b| < 10°, were previously detected with EGRET, probably due to variability. The analysis of the gamma-ray properties of the LBAS sources reveals that the average GeV spectra of BL Lac objects are significantly harder than the spectra of FSRQs. Other spectral and variability blazar properties are discussed. Some prominent Fermi-detected radiogalaxies are presented.


2020 ◽  
Vol 72 (5) ◽  
Author(s):  
Makoto Uemura ◽  
Taisei Abe ◽  
Yurika Yamada ◽  
Shiro Ikeda

Abstract Blazars can be divided into two subtypes, flat spectrum radio quasars (FSRQs) and BL Lac objects, which have been distinguished phenomenologically by the strength of their optical emission lines, while their physical nature and relationship are still not fully understood. We focus on the differences in their variability. We characterize the blazar variability using the Ornstein–Uhlenbeck (OU) process, and investigate the features that are discriminative for the two subtypes. We used optical photometric and polarimetric data obtained with the 1.5 m Kanata telescope for 2008–2014. We found that four features, namely the variation amplitude, characteristic timescale, and non-stationarity of the variability obtained from the light curves and the median of the degree of polarization (PD), are essential for distinguishing between FSRQs and BL Lac objects. FSRQs are characterized by rare and large flares, while the variability of BL Lac objects can be reproduced with a stationary OU process with relatively small amplitudes. The characteristics of the variability are governed not by the differences in the jet structure between the subtypes, but by the peak frequency of the synchrotron emission. This implies that the nature of the variation in the jets is common in FSRQs and BL Lac objects. We found that BL Lac objects tend to have high PD medians, which suggests that they have a stable polarization component. FSRQs have no such component, possibly because of a strong Compton cooling effect in sub-parsec-scale jets.


Author(s):  
JIN ZHANG ◽  
SHUANG-NAN ZHANG ◽  
EN-WEI LIANG

We compile from literature the broadband SEDs of twelve TeV blazars observed simultaneously or quasi-simultaneously with Fermi/LAT and other instruments. Two SEDs are available for each of the objects and the state is identified as a low or high state according to its flux density at GeV/TeV band. The observed SEDs of BL Lac objects (BL Lacs) are fitted well with the synchrotron + synchrotron-self-Compton (syn+SSC) model, whereas the SEDs of the two flat spectrum radio quasars (FSRQs) need to include the contributions of external Compton scattering. In this scenario, it is found that the Doppler factor δ of FSRQs is smaller than that of BL Lacs, but the magnetic field strength B of FSRQs is larger than that of BL Lacs. The increase of the peak frequency of the SEDs is accompanied with the increase of the flux for the individual sources, which seems opposite to the observational phenomena of the blazar sequence. We refer this phenomenonto blazar anti-sequence of spectral variability for individual TeV blazars. However, both the blazar sequence from FSRQs to BL Lacs and blazar anti-sequence of the spectral variability from low state to high state are accompanied by an increase of the break Lorentz factor of the electron's spectrum γ b and a decrease of B. We propose a model in which the mass accretion rate Ṁ is the driving force behind both the blazar sequence for ensembles of blazars and the blazar anti-sequence for individual blazars. Specifically we suggest that the differences in 〈Ṁ〉 of different blazars produce the observed blazar sequence, but ΔṀ in each blazar results in the observed blazar anti-sequence.


2011 ◽  
Vol 414 (3) ◽  
pp. 2674-2689 ◽  
Author(s):  
G. Ghisellini ◽  
F. Tavecchio ◽  
L. Foschini ◽  
G. Ghirlanda
Keyword(s):  

2009 ◽  
Vol 18 (10) ◽  
pp. 1517-1521
Author(s):  
MARKUS BÖTTCHER

This is a summary of recent modeling results of three newly detected TeV blazars of the intermediate BL Lac object (IBL) and flat-spectrum radio quasar (FSRQ) sub-classes: W Comae, 3C 66A, and 3C 279. For model fits to the spectral energy distributions of W Comae and 3C 66A, a non-negligible contribution from a source of soft radiation external to the jets of these blazars is strongly preferred over pure synchrotron-self-Compton or synchrotron-proton-blazar models, respectively. This indicates that IBLs are truly intermediate between the "classical" TeV blazars (high-frequency-peaked BL Lac objects) and FSRQs. The VHE γ-ray detection of the FSRQ 3C 279 poses severe challenges for leptonic models, and seems to favor a hadronic origin of the high-energy emission. However, even a hadronic model suffers from problems with extreme energy requirements.


Sign in / Sign up

Export Citation Format

Share Document