scholarly journals The limb-brightened jet of M87 down to the 7 Schwarzschild radii scale

2018 ◽  
Vol 616 ◽  
pp. A188 ◽  
Author(s):  
J.-Y. Kim ◽  
T. P. Krichbaum ◽  
R.-S. Lu ◽  
E. Ros ◽  
U. Bach ◽  
...  

Messier 87 (M 87) is one of the nearest radio galaxies with a prominent jet extending from sub-pc to kpc scales. Because of its proximity and the large mass of its central black hole (BH), it is one of the best radio sources for the study of jet formation. We study the physical conditions near the jet base at projected separations from the BH of ~7–100 Schwarzschild radii (Rsch). Global mm-VLBI Array (GMVA) observations at 86 GHz (λ = 3.5 mm) provide an angular resolution of ~50 μas, which corresponds to a spatial resolution of only 7 Rsch and reach the small spatial scale. We use five GMVA data sets of M 87 obtained from 2004 to 2015 and present new high angular resolution VLBI maps at 86 GHz. In particular, we focus on the analysis of the brightness temperature, the jet ridge lines, and the ratio of jet to counter-jet. The imaging reveals a parabolically expanding limb-brightened jet which emanates from a resolved VLBI core of ~(8–13) Rsch in size. The observed brightness temperature of the core at any epoch is ~(1–3) × 1010 K, which is below the equipartition brightness temperature and suggests magnetic energy dominance at the jet base. We estimate the diameter of the jet at its base to be ~5 Rsch assuming a self-similar jet structure. This suggests that the sheath of the jet may be anchored in the very inner portion of the accretion disk. The image stacking reveals faint emission at the center of the edge-brightened jet on sub-pc scales. We discuss its physical implication within the context of the spine-sheath structure of the jet.

1980 ◽  
Vol 86 ◽  
pp. 61-64
Author(s):  
G. J. Hurford ◽  
K. A. Marsh ◽  
H. Zirin

The radial intensity profile at the extreme solar limb was measured with high angular resolution during the October, 1977 partial solar eclipse using the Owens Valley solar interferometer at 2.8 cm and the VLA at 6 cm. Substantial limb brightening was observed at 6 cm, with a peak brightness temperature corresponding to an 80% increase over the disk value. Much less limb brightening was observed at 2.8 cm. In each case an extended “tail” to the brightness distribution was detected. The results at both wavelengths are consistent with a simple model in which a rough chromosphere is overlaid by a corona in hydrostatic equilibrium with a density of 5 × 108 cm−3 at its base.


2018 ◽  
Vol 617 ◽  
pp. A77 ◽  
Author(s):  
A. Parikka ◽  
E. Habart ◽  
J. Bernard-Salas ◽  
M. Köhler ◽  
A. Abergel

Context. With Herschel, we can for the first time observe a wealth of high-J CO lines in the interstellar medium with a high angular resolution. These lines are specifically useful for tracing the warm and dense gas and are therefore very appropriate for a study of strongly irradiated dense photodissocation regions (PDRs). Aims. We characterize the morphology of CO J = 19–18 emission and study the high-J CO excitation in a highly UV-irradiated prototypical PDR, the Orion Bar. Methods. We used fully sampled maps of CO J = 19–18 emission with the Photoconductor Array Camera and Spectrometer (PACS) on board the Herschel Space Observatory over an area of ~110′′ × 110′′ with an angular resolution of 9′′. We studied the morphology of this high-J CO line in the Orion Bar and in the region in front and behind the Bar, and compared it with lower-J lines of CO from J = 5–4 to J = 13–12 and 13CO from J = 5–4 to J = 11–10 emission observed with the Herschel Spectral and Photometric Imaging Receiver (SPIRE). In addition, we compared the high-J CO to polycyclic aromatic hydrocarbon (PAH) emission and vibrationally excited H2. We used the CO and 13CO observations and the RADEX model to derive the physical conditions in the warm molecular gas layers. Results. The CO J = 19–18 line is detected unambiguously everywhere in the observed region, in the Bar, and in front and behind of it. In the Bar, the most striking features are several knots of enhanced emission that probably result from column and/or volume density enhancements. The corresponding structures are most likely even smaller than what PACS is able to resolve. The high-J CO line mostly arises from the warm edge of the Orion Bar PDR, while the lower-J lines arise from a colder region farther inside the molecular cloud. Even if it is slightly shifted farther into the PDR, the high-J CO emission peaks are very close to the H/H2 dissociation front, as traced by the peaks of H2 vibrational emission. Our results also suggest that the high-J CO emitting gas is mainly excited by photoelectric heating. The CO J = 19–18/J = 12–11 line intensity ratio peaks in front of the CO J = 19–18 emission between the dissociation and ionization fronts, where the PAH emission also peak. A warm or hot molecular gas could thus be present in the atomic region where the intense UV radiation is mostly unshielded. In agreement with recent ALMA detections, low column densities of hot molecular gas seem to exist between the ionization and dissociation fronts. As found in other studies, the best fit with RADEX modeling for beam-averaged physical conditions is for a density of 106 cm−3 and a high thermal pressure (P∕k = nH × T) of ~1–2 × 108 K cm−3. Conclusions. The high-J CO emission is concentrated close to the dissociation front in the Orion Bar. Hot CO may also lie in the atomic PDR between the ionization and dissociation fronts, which is consistent with the dynamical and photoevaporation effects.


1981 ◽  
Vol 94 ◽  
pp. 209-214 ◽  
Author(s):  
R. Sancisi ◽  
P.C. van der Kruit

The properties of the radio continuum emission from spiral galaxies have been reviewed by Van der Kruit and Allen (1976) and by Van der Kruit (1978). In more recent years the major developments in the understanding of the radio continuum properties and the underlying physical conditions of galaxies have come from a number of surveys of large samples of objects. Some of these surveys (e.g. Hummel, 1980a) have good sensitivity and sufficiently high angular resolution to allow for the first time a clear separation of central sources and disk emission and a study of the properties of these components in a large number of galaxies. As a consequence some results already found, suggested or only suspected in previous detailed investigations of a limited number of objects are put on a firmer basis or entirely new aspects are revealed.


2001 ◽  
Vol 205 ◽  
pp. 44-47
Author(s):  
D.L. Jones ◽  
A.E. Wehrle ◽  
B.G. Piner ◽  
D.L. Meier

The physical conditions in the inner parsec of accretion disks believed to orbit the central black holes in active galactic nuclei can be probed by imaging the absorption of background radio emission by ionized gas in the disk. High angular resolution radio observations of several nearby galaxies at multiple frequencies have revealed evidence for free-free absorption by disks or tori of ionized gas. The depth and angular width of the absorption increases with decreasing frequency. The longest possible baselines are needed to provide adequate angular resolution at low frequencies where the effects of free-free absorption are most evident. Recent results from VSOP as well as ground-based VLBI observations of the nearby galaxy NGC 4261 illustrate the critical importance of high angular resolution at frequencies below 10 GHz.


2010 ◽  
Vol 6 (S275) ◽  
pp. 224-232
Author(s):  
James C. A. Miller-Jones ◽  
Gregory R. Sivakoff ◽  
Diego Altamirano ◽  
Elmar G. Körding ◽  
Hans A. Krimm ◽  
...  

AbstractRelationships between the X-ray and radio behavior of black hole X-ray binaries during outbursts have established a fundamental coupling between the accretion disks and radio jets in these systems. I begin by reviewing the prevailing paradigm for this disk-jet coupling, also highlighting what we know about similarities and differences with neutron star and white dwarf binaries. Until recently, this paradigm had not been directly tested with dedicated high-angular resolution radio imaging over entire outbursts. Moreover, such high-resolution monitoring campaigns had not previously targetted outbursts in which the compact object was either a neutron star or a white dwarf. To address this issue, we have embarked on the Jet Acceleration and Collimation Probe Of Transient X-Ray Binaries (JACPOT XRB) project, which aims to use high angular resolution observations to compare disk-jet coupling across the stellar mass scale, with the goal of probing the importance of the depth of the gravitational potential well, the stellar surface and the stellar magnetic field, on jet formation. Our team has recently concluded its first monitoring series, including (E)VLA, VLBA, X-ray, optical, and near-infrared observations of entire outbursts of the black hole candidate H 1743-322, the neutron star system Aquila X-1, and the white dwarf system SS Cyg. Here I present preliminary results from this work, largely confirming the current paradigm, but highlighting some intriguing new behavior, and suggesting a possible difference in the jet formation process between neutron star and black hole systems.


2018 ◽  
Vol 14 (S343) ◽  
pp. 398-399
Author(s):  
J. P. Fonfría ◽  
M. Fernández-López ◽  
J. R. Pardo ◽  
M. Agúndez ◽  
C. Sánchez Contreras ◽  
...  

AbstractAGB stars are important contributors of processed matter to the ISM. However, the physical and chemical mechanisms involved in its ejection are still poorly known. This process is expected to have remarkable effects in the innermost envelope, where the dust grains are formed, the gas is accelerated, the chemistry is active, and the radiative excitation becomes important. A good tracer of this region in C-rich stars is SiS, an abundant refractory molecule that can display maser lines, very sensitive to changes in the physical conditions. We present high angular resolution interferometer observations (HPBW ≳0.″.25) of the v = 0 J = 14 – 13 and 15 – 14 SiS maser lines towards the archetypal AGB star IRC+10216, carried out with CARMA and ALMA to explore the inner 1” region around the central star. We also present an ambitious monitoring of these lines along one single pulsation period carried out with the IRAM 30 m telescope.


1997 ◽  
Vol 180 ◽  
pp. 346-346
Author(s):  
A. Dayal ◽  
J. H. Bieging ◽  
P. Bergman

We have observed 2 compact PPNe, AFGL 2343 and IRAS 22272+5435, in the CO J=1-0 transition using the Owens Valley interferometer (OVRO), and the NRAO 12-meter telescope. Our observations were made in the low and intermediate resolution configurations of the interferometer and we obtain a synthesized beam (HPBW) of ≃ 4″. We are now modelling both sources using statistical equilibrium/radiative transfer codes. Our objectives are to a) map the distribution and kinematics of the molecular gas at high angular resolution and b) estimate the physical conditions (mass loss rate, temperature, density) in the molecular envelopes, through our models.


2020 ◽  
Vol 640 ◽  
pp. A69 ◽  
Author(s):  
Jae-Young Kim ◽  
Thomas P. Krichbaum ◽  
Avery E. Broderick ◽  
Maciek Wielgus ◽  
Lindy Blackburn ◽  
...  

3C 279 is an archetypal blazar with a prominent radio jet that show broadband flux density variability across the entire electromagnetic spectrum. We use an ultra-high angular resolution technique – global Very Long Baseline Interferometry (VLBI) at 1.3 mm (230 GHz) – to resolve the innermost jet of 3C 279 in order to study its fine-scale morphology close to the jet base where highly variable γ-ray emission is thought to originate, according to various models. The source was observed during four days in April 2017 with the Event Horizon Telescope at 230 GHz, including the phased Atacama Large Millimeter/submillimeter Array (ALMA), at an angular resolution of ∼20 μas (at a redshift of z = 0.536 this corresponds to ∼0.13 pc  ∼ 1700 Schwarzschild radii with a black hole mass MBH = 8 × 108 M⊙). Imaging and model-fitting techniques were applied to the data to parameterize the fine-scale source structure and its variation. We find a multicomponent inner jet morphology with the northernmost component elongated perpendicular to the direction of the jet, as imaged at longer wavelengths. The elongated nuclear structure is consistent on all four observing days and across different imaging methods and model-fitting techniques, and therefore appears robust. Owing to its compactness and brightness, we associate the northern nuclear structure as the VLBI “core”. This morphology can be interpreted as either a broad resolved jet base or a spatially bent jet. We also find significant day-to-day variations in the closure phases, which appear most pronounced on the triangles with the longest baselines. Our analysis shows that this variation is related to a systematic change of the source structure. Two inner jet components move non-radially at apparent speeds of ∼15 c and ∼20 c (∼1.3 and ∼1.7 μas day−1, respectively), which more strongly supports the scenario of traveling shocks or instabilities in a bent, possibly rotating jet. The observed apparent speeds are also coincident with the 3C 279 large-scale jet kinematics observed at longer (cm) wavelengths, suggesting no significant jet acceleration between the 1.3 mm core and the outer jet. The intrinsic brightness temperature of the jet components are ≲1010 K, a magnitude or more lower than typical values seen at ≥7 mm wavelengths. The low brightness temperature and morphological complexity suggest that the core region of 3C 279 becomes optically thin at short (mm) wavelengths.


2020 ◽  
Vol 31 ◽  
Author(s):  
Trung Van Dinh

Following our previous work on the hydrodynamic simulations of the structure of circumstellar envelopes in the presence of a binary companion, in this paper we present the results of radiative transfer calculations for molecular emission line HC3N J=5 – 4 from these simulated circumstellar envelopes. We show that the molecular line emission traces closely the spiral pattern and the associated density enhancement induced by the presence of the binary companion. The molecular emission provides the spatial kinematics of the features within the envelope, which is valuable for estimating the orbital parameters of the binary system and for inferring the physical conditions of the gas within the envelope. We also show that the appearance of the molecular emission depends on the viewing angle resulting in a range of shapes from the spiral pattern to ring-like features, similar to that observed recently in a number of circumstellar envelopes at high angular resolution.


Author(s):  
Ralph Oralor ◽  
Pamela Lloyd ◽  
Satish Kumar ◽  
W. W. Adams

Small angle electron scattering (SAES) has been used to study structural features of up to several thousand angstroms in polymers, as well as in metals. SAES may be done either in (a) long camera mode by switching off the objective lens current or in (b) selected area diffraction mode. In the first case very high camera lengths (up to 7Ø meters on JEOL 1Ø ØCX) and high angular resolution can be obtained, while in the second case smaller camera lengths (approximately up to 3.6 meters on JEOL 1Ø ØCX) and lower angular resolution is obtainable. We conducted our SAES studies on JEOL 1ØØCX which can be switched to either mode with a push button as a standard feature.


Sign in / Sign up

Export Citation Format

Share Document