scholarly journals Why an intrinsic magnetic field does not protect a planet against atmospheric escape

2018 ◽  
Vol 614 ◽  
pp. L3 ◽  
Author(s):  
Herbert Gunell ◽  
Romain Maggiolo ◽  
Hans Nilsson ◽  
Gabriella Stenberg Wieser ◽  
Rikard Slapak ◽  
...  

The presence or absence of a magnetic field determines the nature of how a planet interacts with the solar wind and what paths are available for atmospheric escape. Magnetospheres form both around magnetised planets, such as Earth, and unmagnetised planets, like Mars and Venus, but it has been suggested that magnetised planets are better protected against atmospheric loss. However, the observed mass escape rates from these three planets are similar (in the approximate (0.5–2) kg s−1 range), putting this latter hypothesis into question. Modelling the effects of a planetary magnetic field on the major atmospheric escape processes, we show that the escape rate can be higher for magnetised planets over a wide range of magnetisations due to escape of ions through the polar caps and cusps. Therefore, contrary to what has previously been believed, magnetisation is not a sufficient condition for protecting a planet from atmospheric loss. Estimates of the atmospheric escape rates from exoplanets must therefore address all escape processes and their dependence on the planet’s magnetisation.

2021 ◽  
Vol 217 (3) ◽  
Author(s):  
K. J. Trattner ◽  
S. M. Petrinec ◽  
S. A. Fuselier

AbstractOne of the major questions about magnetic reconnection is how specific solar wind and interplanetary magnetic field conditions influence where reconnection occurs at the Earth’s magnetopause. There are two reconnection scenarios discussed in the literature: a) anti-parallel reconnection and b) component reconnection. Early spacecraft observations were limited to the detection of accelerated ion beams in the magnetopause boundary layer to determine the general direction of the reconnection X-line location with respect to the spacecraft. An improved view of the reconnection location at the magnetopause evolved from ionospheric emissions observed by polar-orbiting imagers. These observations and the observations of accelerated ion beams revealed that both scenarios occur at the magnetopause. Improved methodology using the time-of-flight effect of precipitating ions in the cusp regions and the cutoff velocity of the precipitating and mirroring ion populations was used to pinpoint magnetopause reconnection locations for a wide range of solar wind conditions. The results from these methodologies have been used to construct an empirical reconnection X-line model known as the Maximum Magnetic Shear model. Since this model’s inception, several tests have confirmed its validity and have resulted in modifications to the model for certain solar wind conditions. This review article summarizes the observational evidence for the location of magnetic reconnection at the Earth’s magnetopause, emphasizing the properties and efficacy of the Maximum Magnetic Shear Model.


2018 ◽  
Vol 45 (18) ◽  
pp. 9336-9343 ◽  
Author(s):  
Shotaro Sakai ◽  
Kanako Seki ◽  
Naoki Terada ◽  
Hiroyuki Shinagawa ◽  
Takashi Tanaka ◽  
...  

2019 ◽  
Vol 488 (2) ◽  
pp. 2108-2120 ◽  
Author(s):  
Hilary Egan ◽  
Riku Jarvinen ◽  
Yingjuan Ma ◽  
David Brain

ABSTRACT Intrinsic magnetic fields have long been thought to shield planets from atmospheric erosion via stellar winds; however, the influence of the plasma environment on atmospheric escape is complex. Here we study the influence of a weak intrinsic dipolar planetary magnetic field on the plasma environment and subsequent ion escape from a Mars-sized planet in a global three-dimensional hybrid simulation. We find that increasing the strength of a planet’s magnetic field enhances ion escape until the magnetic dipole’s standoff distance reaches the induced magnetosphere boundary. After this point increasing the planetary magnetic field begins to inhibit ion escape. This reflects a balance between shielding of the Southern hemisphere from ‘misaligned’ ion pickup forces and trapping of escaping ions by an equatorial plasmasphere. Thus, the planetary magnetic field associated with the peak ion escape rate is critically dependent on the stellar wind pressure. Where possible we have fit power laws for the variation of fundamental parameters (escape rate, escape power, polar cap opening angle, and effective interaction area) with magnetic field, and assessed upper and lower limits for the relationships.


2020 ◽  
Author(s):  
Stas Barabash ◽  
Andrii Voshchepynets ◽  
Mats Holmström ◽  
Futaana Yoshifumi ◽  
Robin Ramstad

<p>Induced magnetospheres of non-magnetized atmospheric bodies like Mars and Venus are formed by magnetic fields of ionospheric currents induced by the convective electric field E = - V x B/c of the solar wind. The induced magnetic fields create a magnetic barrier which forms a void of the solar wind plasma, an induced magnetosphere. But what happens when the interplanetary magnetic field is mostly radial and the convective field E ≈ 0? Do a magnetic barrier and solar wind void form? If yes, how such a degenerate induced magnetosphere work? The question is directly related to the problem of the atmospheric escape due to the interaction with the solar and stellar winds. The radial interplanetary magnetic field in the inner solar system is typical for the ancient Sun conditions and exoplanets on near-star orbits. Also, the radial interplanetary field may provide stronger coupling of the near-planet environment with the solar/stellar winds and thus effectively channels the solar/stellar wind energy to the ionospheric ions. We review the current works on the subject, show examples of degenerate induced magnetospheres of Mars and Venus from Mars Express, Venus Express, and MAVEN measurements and hybrid simulations, discuss physics of degenerate induced magnetospheres, and impact of such configurations on the escape processes.</p>


2020 ◽  
Author(s):  
Harry Manners ◽  
Adam Masters

<p>The magnetosphere of Jupiter is the largest planetary magnetosphere in the solar system, and plays host to internal dynamics that remain, in many ways, mysterious. Prominent among these mysteries are the ultra-low-frequency (<strong>ULF</strong>) pulses ubiquitous in this system. Pulsations in the electromagnetic emissions, magnetic field and flux of energetic particles have been observed for decades, with little to indicate the source mechanism. While ULF waves have been observed in the magnetospheres of all the magnetized planets, the magnetospheric environment at Jupiter seems particularly conducive to the emergence of ULF waves over a wide range of periods (1-100+ minutes). This is mainly due to the high variability of the system on a global scale: internal plasma sources and a powerful intrinsic magnetic field produce a highly-compressible magnetospheric cavity, which can be reduced to a size significantly smaller than its nominal expanded state by variations in the dynamic pressure of the solar wind. Compressive fronts in the solar wind, turbulent surface interactions on the magnetopause and internal plasma processes can also all lead to ULF wave activity inside the magnetosphere.</p><p>To gain the first comprehensive view of ULF waves in the Jovian system, we have performed a heritage survey of magnetic field data measured by six spacecraft that visited the magnetosphere (Galileo, Ulysses, Voyager 1 & 2 and Pioneer 10 & 11). We found several-hundred wave events consisting of wave packets parallel or transverse to the mean magnetic field, interpreted as fast-mode or Alfvénic MHD wave activity, respectively. Parallel and transverse events were often coincident in space and time, which may be evidence of global Alfvénic resonances of the magnetic field known as field-line-resonances. We found that 15-, 30- and 40-minute periods dominate the Jovian ULF wave spectrum, in agreement with the dominant “magic frequencies” often reported in existing literature.</p><p>We will discuss potential driving mechanisms as informed by the results of the heritage survey, how this in turn affects our understanding of energy transfer in the magnetosphere, and potential investigations to be made using data from the JUNO spacecraft. We will also discuss the potential for multiple resonant cavities, and how the resonance modes of the Jovian magnetosphere may differ from those of the other magnetized planets.</p>


2020 ◽  
Author(s):  
Lucile Turc ◽  
Vertti Tarvus ◽  
Andrew Dimmock ◽  
Markus Battarbee ◽  
Urs Ganse ◽  
...  

Abstract. Bounded by the bow shock and the magnetopause, the magnetosheath forms the interface between solar wind and magnetospheric plasmas and regulates solar wind-magnetosphere coupling. Previous works have revealed pronounced dawn-dusk asymmetries in the magnetosheath properties. The dependence of these asymmetries on the upstream parameters remains however largely unknown. One of the main sources of these asymmetries is the bow shock configuration, which is typically quasi-parallel on the dawn side and quasi-perpendicular on the dusk side of the terrestrial magnetosheath because of the Parker spiral orientation of the interplanetary magnetic field (IMF) at Earth. Most of these previous studies rely on collections of spacecraft measurements associated with a wide range of upstream conditions which are processed in order to obtain average values of the magnetosheath parameters. In this work, we use a different approach and quantify the magnetosheath asymmetries in global hybrid-Vlasov simulations performed with the Vlasiator model. We concentrate on three parameters: the magnetic field strength, the plasma density and the flow velocity. We find that the Vlasiator model reproduces accurately the polarity of the asymmetries, but that their level tends to be higher than in spacecraft measurements, probably because the magnetosheath parameters are obtained from a single set of upstream conditions in the simulation, making the asymmetries more prominent. We investigate how the asymmetries change when the angle between the IMF and the Sun-Earth line is reduced and when the Alfven Mach number decreases. We find that a more radial IMF results in a stronger magnetic field asymmetry and a larger variability of the magnetosheath density. In contrast, a lower Alfven Mach number leads to a reduced magnetic field asymmetry and a decrease in the variability of the magnetosheath density and velocity, the latter likely due to weaker foreshock processes. Our results highlight the strong impact of the foreshock on global magnetosheath properties, in particular on the magnetosheath density, which is extremely sensitive to transient foreshock processes.


2020 ◽  
Author(s):  
Tommaso Alberti ◽  
Anna Milillo ◽  
Monica Laurenza ◽  
Stefano Massetti ◽  
Stavro Ivanovski ◽  
...  

<p class="western" align="justify"><span>The interaction between the interplanetary medium and planetary environments gives rise to different phenomena according to the spatio-temporal scales. Here we apply for the first time a novel data analysis method, i.e., the Hilbert-Huang Transform, to discriminate both local and global properties of Venus’ and Mercury’s environments as seen during two MESSENGER flybys. Hence, we may infer that the near-Venus environment is similar in terms of local and global features to the ambient solar wind, possibly related to the induced nature of Venus’ magnetosphere. Conversely, the near-Mercury environment presents some different local features with respect to the ambient solar wind, due to both interaction processes and intrinsic structures of the Hermean environment. Our findings support the ion kinetic nature of the Hermean plasma structures, with the foreshock and the magnetosheath regions being characterized by inhomogeneous ion-kinetic intermittent fluctuations, together with MHD and large-scale fluctuations, the latter being representative of the main structure of the magnetosphere. We also show that the HHT analysis allow to capture and reproduce some interesting features of the Hermean environment as flux transfer events, Kelvin-Helmholtz vortex, and ULF wave activity, thus providing a suitable method for characterizing physical processes of different nature. Our approach demonstrate to be very promising for the characterization of the structure and dynamics of planetary magnetic field at different scales, for the identification of different planetary regions, and for the detection of the “effective” planetary magnetic field that can be used for modelling purposes.</span></p>


2013 ◽  
Vol 31 (12) ◽  
pp. 2163-2178 ◽  
Author(s):  
P. Kajdič ◽  
X. Blanco-Cano ◽  
N. Omidi ◽  
K. Meziane ◽  
C. T. Russell ◽  
...  

Abstract. In this work we perform a statistical analysis of 92 foreshock cavitons observed with the Cluster spacecraft 1 during the period 2001–2006. We analyze time intervals during which the spacecraft was located in the Earth's foreshock with durations longer than 10 min. Together these amount to ~ 50 days. The cavitons are transient structures in the Earth's foreshock. Their main signatures in the data include simultaneous depletions of the magnetic field intensity and plasma density, which are surrounded by a rim of enhanced values of these two quantities. Cavitons form due to nonlinear interaction of transverse and compressive ultra-low frequency (ULF) waves and are therefore always surrounded by intense compressive ULF fluctuations. They are carried by the solar wind towards the bow shock. This work represents the first systematic study of a large sample of foreshock cavitons. We find that cavitons appear for a wide range of solar wind and interplanetary magnetic field conditions and are therefore a common feature upstream of Earth's quasi-parallel bow shock with an average occurrence rate of ~ 2 events per day. We also discuss their observational properties in the context of other known upstream phenomena and show that the cavitons are a distinct structure in the foreshock.


2020 ◽  
Author(s):  
Lucile Turc ◽  
Vertti Tarvus ◽  
Andrew Dimmock ◽  
Markus Battarbee ◽  
Urs Ganse ◽  
...  

<p>The magnetosheath is the region bounded by the bow shock and the magnetopause which is home to shocked solar wind plasma. At the interface between the solar wind and the magnetosphere, the magnetosheath plays a key role in the coupling between these two media. Previous works have revealed pronounced dawn-dusk asymmetries in the magnetosheath properties, with for example the magnetic field strength and flow velocity being larger on the dusk side, while the plasma is denser, hotter and more turbulent on the dawn side. The dependence of these asymmetries on the upstream parameters remains however largely unknown. One of the main sources of these asymmetries is the bow shock configuration, which is typically quasi-parallel on the dawn side and quasi-perpendicular on the dusk side of the terrestrial magnetosheath because of the Parker-spiral orientation of the interplanetary magnetic field (IMF) at Earth. Most of these previous studies rely on collections of spacecraft measurements associated with a wide range of upstream conditions that have been processed to obtain the average values of the magnetosheath parameters. In this work, we use a different approach and quantify the magnetosheath asymmetries in global hybrid-Vlasov simulations performed with the Vlasiator model. We concentrate on three parameters: the magnetic field strength, the plasma density and the flow velocity. We find that the Vlasiator model reproduces accurately the polarity of the asymmetries, but that their level tends to be higher than in spacecraft measurements, probably due to the different processing methods. We investigate how the asymmetries change when the IMF becomes more radial and when the Alfvén Mach number decreases. When the IMF makes a 30° angle with the Sun-Earth line instead of 45°, we find a stronger magnetic field asymmetry and a larger variability of the magnetosheath density. In contrast, a lower Alfvén Mach number leads to a decrease of the magnetic field asymmetry level and of the variability of the magnetosheath density and velocity, likely due to weaker foreshock processes.</p>


Sign in / Sign up

Export Citation Format

Share Document