scholarly journals Effective temperature – radius relationship of M dwarfs

2019 ◽  
Vol 626 ◽  
pp. A32 ◽  
Author(s):  
S. Cassisi ◽  
M. Salaris

M-dwarf stars provide very favourable conditions for finding habitable worlds beyond our solar system. The estimation of the fundamental parameters of the transiting exoplanets relies on the accuracy of the theoretical predictions for radius and effective temperature of the host M dwarf, therefore it is important to conduct multiple empirical tests of very low-mass star (VLM) models. These stars are the theoretical counterpart of M dwarfs. Recent determinations of mass, radius, and effective temperature of a sample of M dwarfs of known metallicity have disclosed an apparent discontinuity in the effective temperature-radius diagram that corresponds to a stellar mass of about 0.2 M⊙. This discontinuity has been ascribed to the transition from partially convective to fully convective stars. In this paper we compare existing VLM models to these observations, and find that theory does not predict any discontinuity at around 0.2 M⊙, but a smooth change in slope of the effective temperature-radius relationship around this mass value. The appearance of a discontinuity is due to naively fitting the empirical data with linear segments. Moreover, its origin is not related to the transition to fully convective structures. We find that this feature is instead an empirical signature for the transition to a regime where electron degeneracy provides an important contribution to the stellar equation of state, and it constitutes an additional test of the consistency of the theoretical framework for VLM models.

2021 ◽  
Vol 922 (1) ◽  
pp. 44
Author(s):  
Sean Jordan ◽  
Paul B. Rimmer ◽  
Oliver Shorttle ◽  
Tereza Constantinou

Abstract Compared to the diversity seen in exoplanets, Venus is a veritable astrophysical twin of the Earth; however, its global cloud layer truncates features in transmission spectroscopy, masking its non-Earth-like nature. Observational indicators that can distinguish an exo-Venus from an exo-Earth must therefore survive above the cloud layer. The above-cloud atmosphere is dominated by photochemistry, which depends on the spectrum of the host star and therefore changes between stellar systems. We explore the systematic changes in photochemistry above the clouds of Venus-like exoplanets orbiting K-dwarf or M-dwarf host stars, using a recently validated model of the full Venus atmosphere (0–115 km) and stellar spectra from the Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanetary Systems (MUSCLES) Treasury survey. SO2, OCS, and H2S are key gas species in Venus-like planets that are not present in Earth-like planets, and could therefore act as observational discriminants if their atmospheric abundances are high enough to be detected. We find that SO2, OCS, and H2S all survive above the cloud layer when irradiated by the coolest K dwarf and all seven M dwarfs, whereas these species are heavily photochemically depleted above the clouds of Venus. The production of sulfuric acid molecules that form the cloud layer decreases for decreasing stellar effective temperature. Less steady-state photochemical oxygen and ozone forms with decreasing stellar effective temperature, and the effect of chlorine-catalyzed reaction cycles diminish in favor of HO x and SO x catalyzed cycles. We conclude that trace sulfur gases will be prime observational indicators of Venus-like exoplanets around M-dwarf host stars, potentially capable of distinguishing an exo-Venus from an exo-Earth.


2020 ◽  
Vol 636 ◽  
pp. A9 ◽  
Author(s):  
A. Antoniadis-Karnavas ◽  
S. G. Sousa ◽  
E. Delgado-Mena ◽  
N. C. Santos ◽  
G. D. C. Teixeira ◽  
...  

Aims. The derivation of spectroscopic parameters for M dwarf stars is very important in the fields of stellar and exoplanet characterization. The goal of this work is the creation of an automatic computational tool able to quickly and reliably derive the Teff and [Fe/H] of M dwarfs using optical spectra obtained by different spectrographs with different resolutions. Methods. ODUSSEAS (Observing Dwarfs Using Stellar Spectroscopic Energy-Absorption Shapes) is based on the measurement of the pseudo equivalent widths for more than 4000 stellar absorption lines and on the use of the machine learning Python package “scikit-learn” for predicting the stellar parameters. Results. We show that our tool is able to derive parameters accurately and with high precision, having precision errors of ~30 K for Teff and ~0.04 dex for [Fe/H]. The results are consistent for spectra with resolutions of between 48 000 and 115 000 and a signal-to-noise ratio above 20.


2019 ◽  
Vol 491 (1) ◽  
pp. 39-50 ◽  
Author(s):  
Seo-Won Chang ◽  
Christian Wolf ◽  
Christopher A Onken

ABSTRACT We present our search for flares from M dwarf stars in the SkyMapper Southern Survey DR1, which covers nearly the full Southern hemisphere with six-filter sequences that are repeatedly observed in the passbands uvgriz. This allows us to identify bona fide flares in single-epoch observations on time-scales of less than four minutes. Using a correlation-based outlier search algorithm we find 254 flare events in the amplitude range of Δu ∼ 0.1 to 5 mag. In agreement with previous work, we observe the flaring fraction of M dwarfs to increase from ∼30 to ∼1000 per million stars for spectral types M0 to M5. We also confirm the decrease in flare fraction with larger vertical distance from the Galactic plane which is expected from declining stellar activity with age. Based on precise distances from Gaia DR2, we find a steep decline in the flare fraction from the plane to 150 pc vertical distance and a significant flattening towards larger distances. We then reassess the strong type dependence in the flaring fraction with a volume-limited sample within a distance of 50 pc from the Sun: in this sample the trend disappears and we find instead a constant fraction of ∼1 650 per million stars for spectral types M1 to M5. Finally, large-amplitude flares with Δi > 1 mag are very rare with a fraction of ∼0.5 per million M dwarfs. Hence, we expect that M-dwarf flares will not confuse SkyMapper’s search for kilonovae from gravitational-wave events. proper references for those databases (or follow their guideline on citation).


1989 ◽  
Vol 104 (2) ◽  
pp. 75-78
Author(s):  
R.D. Robinson ◽  
L.E. Cram

AbstractObservations are reported of the Ca II resonance lines and II α in dK and dM stars, made with high S/N ratio and high spectral resolution. Ca II emission is found in all stars observed, and those having weak Ca II exhibit marked Hα absorption. It is found that the strengths of the two kinds of chromospheric, lines are not tightly correlated, an effect which can be shown to be independent of the effective temperature of the stars. The result implies that a one-parameter description (e.g. heating rate) of the chromospheres is not viable. While lateral inhomogeneities are likely to be an important second parameter, we also suggest that the Hα line may be formed in a region considerable higher that in which the Ca II lines are formed.


1993 ◽  
Vol 156 ◽  
pp. 75-78
Author(s):  
Philip A. Ianna

Trigonometric parallaxes based on CCD observations are presented here for six southern very late-type M dwarf stars and three white dwarfs. The M dwarfs RG0050-2722, ESO207-61, MH2115-4518, MH2124-4228, and LHS3003 are among the very lowest luminosity stars known.


2020 ◽  
Vol 638 ◽  
pp. A115
Author(s):  
D. Hintz ◽  
B. Fuhrmeister ◽  
S. Czesla ◽  
J. H. M. M. Schmitt ◽  
A. Schweitzer ◽  
...  

The He I infrared (IR) line at a vacuum wavelength of 10 833 Å is a diagnostic for the investigation of atmospheres of stars and planets orbiting them. For the first time, we study the behavior of the He I IR line in a set of chromospheric models for M-dwarf stars, whose much denser chromospheres may favor collisions for the level population over photoionization and recombination, which are believed to be dominant in solar-type stars. For this purpose, we use published PHOENIX models for stars of spectral types M2 V and M3 V and also compute new series of models with different levels of activity following an ansatz developed for the case of the Sun. We perform a detailed analysis of the behavior of the He I IR line within these models. We evaluate the line in relation to other chromospheric lines and also the influence of the extreme ultraviolet (EUV) radiation field. The analysis of the He I IR line strengths as a function of the respective EUV radiation field strengths suggests that the mechanism of photoionization and recombination is necessary to form the line for inactive models, while collisions start to play a role in our most active models. Moreover, the published model set, which is optimized in the ranges of the Na I D2, Hα, and the bluest Ca II IR triplet line, gives an adequate prediction of the He I IR line for most stars of the stellar sample. Because especially the most inactive stars with weak He I IR lines are fit worst by our models, it seems that our assumption of a 100% filling factor of a single inactive component no longer holds for these stars.


2017 ◽  
Vol 17 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Jacob Haqq-Misra ◽  
Ravi Kumar Kopparapu ◽  
Eric T. Wolf

AbstractM-dwarf stars are more abundant than G-dwarf stars, so our position as observers on a planet orbiting a G-dwarf raises questions about the suitability of other stellar types for supporting life. If we consider ourselves as typical, in the anthropic sense that our environment is probably a typical one for conscious observers, then we are led to the conclusion that planets orbiting in the habitable zone of G-dwarf stars should be the best place for conscious life to develop. But such a conclusion neglects the possibility that K-dwarfs or M-dwarfs could provide more numerous sites for life to develop, both now and in the future. In this paper we analyse this problem through Bayesian inference to demonstrate that our occurrence around a G-dwarf might be a slight statistical anomaly, but only the sort of chance event that we expect to occur regularly. Even if M-dwarfs provide more numerous habitable planets today and in the future, we still expect mid G- to early K-dwarfs stars to be the most likely place for observers like ourselves. This suggests that observers with similar cognitive capabilities as us are most likely to be found at the present time and place, rather than in the future or around much smaller stars.


2020 ◽  
Vol 633 ◽  
pp. A130
Author(s):  
L. H. Quiroga-Nuñez ◽  
H. T. Intema ◽  
J. R. Callingham ◽  
J. Villadsen ◽  
H. J. van Langevelde ◽  
...  

Serendipitously, we rediscovered radio emission from the binary system Ross 867 (M4.5V) and Ross 868 (M3.5V) while inspecting archival Giant Metrewave Radio Telescope (GMRT) observations. The binary system consists of two M-dwarf stars that share common characteristics such as spectral type, astrometric parameters, age, and emission at infrared, optical, and X-ray frequencies. The GMRT data at 610 MHz taken on July 2011 shows that the radio emission from Ross 867 is polarized and highly variable on hour timescales with a peak flux of 10.4 ± 0.7 mJy beam−1. Additionally, after reviewing archival data from several observatories (VLA, GMRT, JVLA, and LOFAR), we confirm that although the two stars are likely coeval, only Ross 867 was detected, while Ross 868 remains undetected at radio wavelengths. As the stars have a large orbital separation, this binary stellar system provides a coeval laboratory to examine and constrain the stellar properties linked to radio activity in M dwarfs. We speculate that the observed difference in radio activity between the dwarfs could be due to vastly different magnetic field topologies or that Ross 867 has an intrinsically different dynamo.


2020 ◽  
Vol 633 ◽  
pp. A116
Author(s):  
Anthony Mercer ◽  
Dimitris Stamatellos

Context. Around 30 per cent of the observed exoplanets that orbit M dwarf stars are gas giants that are more massive than Jupiter. These planets are prime candidates for formation by disc instability. Aims. We want to determine the conditions for disc fragmentation around M dwarfs and the properties of the planets that are formed by disc instability. Methods. We performed hydrodynamic simulations of M dwarf protostellar discs in order to determine the minimum disc mass required for gravitational fragmentation to occur. Different stellar masses, disc radii, and metallicities were considered. The mass of each protostellar disc was steadily increased until the disc fragmented and a protoplanet was formed. Results. We find that a disc-to-star mass ratio between ~0.3 and ~0.6 is required for fragmentation to happen. The minimum mass at which a disc fragment increases with the stellar mass and the disc size. Metallicity does not significantly affect the minimum disc fragmentation mass but high metallicity may suppress fragmentation. Protoplanets form quickly (within a few thousand years) at distances around ~50 AU from the host star, and they are initially very hot; their centres have temperatures similar to the ones expected at the accretion shocks around planets formed by core accretion (up to 12 000 K). The final properties of these planets (e.g. mass and orbital radius) are determined through long-term disc-planet or planet–planet interactions. Conclusions. Disc instability is a plausible way to form gas giant planets around M dwarfs provided that discs have at least 30% the mass of their host stars during the initial stages of their formation. Future observations of massive M dwarf discs or planets around very young M dwarfs are required to establish the importance of disc instability for planet formation around low-mass stars.


2018 ◽  
Vol 619 ◽  
pp. A32 ◽  
Author(s):  
D. Baroch ◽  
J. C. Morales ◽  
I. Ribas ◽  
L. Tal-Or ◽  
M. Zechmeister ◽  
...  

Context. The CARMENES spectrograph is surveying ∼300 M dwarf stars in search for exoplanets. Among the target stars, spectroscopic binary systems have been discovered, which can be used to measure fundamental properties of stars. Aims. Using spectroscopic observations, we determine the orbital and physical properties of nine new double-line spectroscopic binary systems by analysing their radial velocity curves. Methods. We use two-dimensional cross-correlation techniques to derive the radial velocities of the targets, which are then employed to determine the orbital properties. Photometric data from the literature are also analysed to search for possible eclipses and to measure stellar variability, which can yield rotation periods. Results. Out of the 342 stars selected for the CARMENES survey, 9 have been found to be double-line spectroscopic binaries, with periods ranging from 1.13 to ∼8000 days and orbits with eccentricities up to 0.54. We provide empirical orbital properties and minimum masses for the sample of spectroscopic binaries. Absolute masses are also estimated from mass-luminosity calibrations, ranging between ∼0.1 and ∼0.6 M⊙. Conclusions. These new binary systems increase the number of double-line M dwarf binary systems with known orbital parameters by 15%, and they have lower mass ratios on average.


Sign in / Sign up

Export Citation Format

Share Document