scholarly journals Height variation of magnetic field and plasma flows in isolated bright points

2019 ◽  
Vol 630 ◽  
pp. A139 ◽  
Author(s):  
Christoph Kuckein

Aims. The expansion with height of the solar photospheric magnetic field and the plasma flows is investigated for three isolated bright points (BPs). Methods. The BPs were observed simultaneously with three different instruments attached to the 1.5 m GREGOR telescope: (1) filtergrams of Ca II H and blue continuum (4505 Å) with the HiFI, (2) imaging spectroscopy of the Na I D2 line at 5890 Å with the GFPI, and (3) slit spectropolarimetry in the 1 μm spectral range with the GRIS. Spectral-line inversions were carried out for the Si I 10827 Å Stokes profiles. Results. Bright points are identified in the Ca II H and blue continuum filtergrams. Moreover, they are also detected in the blue wing of the Na I D2 and Si I 10827 Å lines, as well as in the Ca I 10839 Å line-core images. We carried out two studies to validate the expansion of the magnetic field with height. On the one hand, we compare the photospheric Stokes V signals of two different spectral lines that are sensitive to different optical depths (Ca I vs. Si I). The area at which the Stokes V signal is significantly large is almost three times larger for the Si I line – sensitive to higher layers – than for the Ca I one. On the other hand, the inferred line-of-sight (LOS) magnetic fields at two optical depths (log τ = −1.0 vs. −2.5) from the Si I line reveal spatially broader fields in the higher layer, up to 51% more extensive in one of the BPs. The dynamics of BPs are tracked along the Na I D2 and Si I lines. The inferred flows from Na I D2 Doppler shifts are rather slow in BPs (≲1 km s−1). However, the Si I line shows intriguing Stokes profiles with important asymmetries. The analysis of these profiles unveils the presence of two components, a fast and a slow one, within the same resolution element. The faster one, with a smaller filling factor of ∼0.3, exhibits LOS velocities of about 6 km s−1. The slower component is slightly blueshifted. Conclusions. The present work provides observational evidence for the expansion of the magnetic field with height. Moreover, fast flows are likely present in BPs but are sometimes hidden because of observational limitations.

1993 ◽  
Vol 138 ◽  
pp. 305-309
Author(s):  
Marco Landolfi ◽  
Egidio Landi Degl’Innocenti ◽  
Maurizio Landi Degl’Innocenti ◽  
Jean-Louis Leroy ◽  
Stefano Bagnulo

AbstractBroadband linear polarization in the spectra of Ap stars is believed to be due to differential saturation between σ and π Zeeman components in spectral lines. This mechanism has been known for a long time to be the main agent of a similar phenomenon observed in sunspots. Since this phenomenon has been carefully calibrated in the solar case, it can be confidently used to deduce the magnetic field of Ap stars.Given the magnetic configuration of a rotating star, it is possible to deduce the broadband polarization at any phase. Calculations performed for the oblique dipole model show that the resulting polarization diagrams are very sensitive to the values of i (the angle between the rotation axis and the line of sight) and β (the angle between the rotation and magnetic axes). The dependence on i and β is such that the four-fold ambiguity typical of the circular polarization observations ((i,β), (β,i), (π-i,π-β), (π-β,π-i)) can be removed.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1306
Author(s):  
Kirill Bronnikov ◽  
Vladimir Krechet ◽  
Vadim Oshurko

We find a family of exact solutions to the Einstein–Maxwell equations for rotating cylindrically symmetric distributions of a perfect fluid with the equation of state p=wρ (|w|<1), carrying a circular electric current in the angular direction. This current creates a magnetic field along the z axis. Some of the solutions describe geometries resembling that of Melvin’s static magnetic universe and contain a regular symmetry axis, while some others (in the case w>0) describe traversable wormhole geometries which do not contain a symmetry axis. Unlike Melvin’s solution, those with rotation and a magnetic field cannot be vacuum and require a current. The wormhole solutions admit matching with flat-space regions on both sides of the throat, thus forming a cylindrical wormhole configuration potentially visible for distant observers residing in flat or weakly curved parts of space. The thin shells, located at junctions between the inner (wormhole) and outer (flat) regions, consist of matter satisfying the Weak Energy Condition under a proper choice of the free parameters of the model, which thus forms new examples of phantom-free wormhole models in general relativity. In the limit w→1, the magnetic field tends to zero, and the wormhole model tends to the one obtained previously, where the source of gravity is stiff matter with the equation of state p=ρ.


2000 ◽  
Vol 175 ◽  
pp. 324-329 ◽  
Author(s):  
H.F. Henrichs ◽  
J.A. de Jong ◽  
J.-F. Donati ◽  
C. Catala ◽  
G.A. Wade ◽  
...  

AbstractNew circular spectropolarimetric observations of the B1 IIIe star β Cep (υsini = 25 km s−1) show a sinusoidally varying weak longitudinal magnetic field (~ 200 G peak-to-peak). The period corresponds to the 12 day period in the stellar wind variations observed in ultraviolet spectral lines. Maximum field occurs at maximum emission in the UV wind lines. This gives compelling evidence for a magnetic-rotator model for this star, with an unambiguous rotation period of 12 days.The similarity between the Hα emission phases in β Cep and in Be stars suggests that the origin of the Be phenomenon does not have to be rapid rotation: we propose that in β Cep the velocity to bring material in (Keplerian) orbit is provided by the high corotation velocity at the Alfvén radius (~10 R*), whereas in Be stars this is done by the rapid rotation of the surface. In both cases the cause of the emission phases has still to be found. Weak temporary magnetic fields remain the strongest candidate.A full paper, with results including additional measurements in June and July 1999, will appear in A & A.


1993 ◽  
Vol 139 ◽  
pp. 132-132
Author(s):  
G. Mathys

Magnetic field appears to play a major role in the pulsations of rapidly oscillating Ap (roAp) stars. Understanding of the behaviour of these objects thus requires knowledge of their magnetic field. Such knowledge is in particular essential to interpret the modulation of the amplitude of the photometric variations (with a frequency very close to the rotation frequency of the star) and to understand the driving mechanism of the pulsation. Therefore, a systematic programme of study of the magnetic field of roAp stars has been started, of which preliminary (and still very partial) results are presented here.Magnetic fields of Ap stars can be diagnosed from the Zeeman effect that they induced in spectral lines either from the observation of line-splitting in high-resolution unpolarized spectra (which only occurs in favourable circumstances) or from the observation of circular polarization of the lines in medium- to high-resolution spectra.


Universe ◽  
2019 ◽  
Vol 5 (5) ◽  
pp. 104 ◽  
Author(s):  
Efrain J. Ferrer ◽  
Aric Hackebill

We discuss how a magnetic field can affect the equation of state of a many-particle neutron system. We show that, due to the anisotropy in the pressures, the pressure transverse to the magnetic field direction increases with the magnetic field, while the one along the field direction decreases. We also show that in this medium there exists a significant negative field-dependent contribution associated with the vacuum pressure. This negative pressure demands a neutron density sufficiently high (corresponding to a baryonic chemical potential of μ = 2.25 GeV) to produce the necessary positive matter pressure that can compensate for the gravitational pull. The decrease of the parallel pressure with the field limits the maximum magnetic field to a value of the order of 10 18 G, where the pressure decays to zero. We show that the combination of all these effects produces an insignificant variation of the system equation of state. We also found that this neutron system exhibits paramagnetic behavior expressed by the Curie’s law in the high-temperature regime. The reported results may be of interest for the astrophysics of compact objects such as magnetars, which are endowed with substantial magnetic fields.


1971 ◽  
Vol 43 ◽  
pp. 24-29 ◽  
Author(s):  
J. V. Ramsay ◽  
R. G. Giovanelli ◽  
H. R. Gillett

The magnetograph is based on a high-resolution filter which serves in place of a spectrograph, except that a reasonably large field of view (one-quarter of the Sun's diameter) can be observed at the one instant. Observations are made by obtaining filtergrams of opposite circular polarizations simultaneously in the wing of a magnetically sensitive line. Exposure times are about 0.3 s, the angular resolution of the magnetic field is about 2 arc s, closest frame repetition rates about 8 s. The filtergrams are processed subsequently by photographic or television subtraction. Semiautomatic photographic and/or TV subtractions yield magnetograms suitable for cinematographic projection though the subtractions are not yet as perfect as those obtained by individual subtraction.


1971 ◽  
Vol 15 ◽  
pp. 59-62 ◽  
Author(s):  
Karl D. Rakoš

It is certain, that the mechanism causing variations of the magnetic field and spectral lines in Ap stars must also cause variations in their luminosities. The light curves are synchronous with the magnetic variations and usually the maximum of the positive magnetic field strength coincides with the minimum of the light curve. In the past the oblique rotator theory was not able to explain easily such brightness change. There is no simple reason to suppose, that the brightness of the surface of a star would increase or decrease at one magnetic pole only. Since that time a few stars were found with some indications for secondary minima and maxima in the light curves, but the first established double wave in a light curve was recently found by H. M. MAITZEN and K. D. RAKOš in HD 125 248 (1970), see Figure 1. It is a very exciting result, only the light curve in yellow light shows two maxima and two minima. The light curves in blue and ultraviolet are very smooth and show no evidence for secondary waves.


1974 ◽  
Vol 56 ◽  
pp. 45-47
Author(s):  
R. B. Dunn ◽  
J. B. Zirker ◽  
J. M. Beckers

A number of observers have noted the presence of bright structures near the cores of the chromospheric rosettes when observed in the far wings of the Hα line (eg Hα ±7/8 Å). Dunn and Zirker observed these bright structures with the highest possible resolution using the Sacramento Peak vacuum solar telescope. They find that these bright regions exhibit a very intricate fine structure which can be followed out much further into the Hα line wing (eg Hα + 2 Å) and even into the continuum. They called this fine structure ‘solar filigree’, the name referring mainly to the collective appearance of the fine structure elements. The elements themselves appear as dot-like structures and frequently also as small wiggly structures called ‘crinkles’. The properties of the filigree structure are summarized as follows: (i)Size: Measured diameter of the crinkles and dots equals 0.25, 0.40 and 0.60″ at Hα + 2 Å, Hα ± 7/8 Å and Hα ±5/8 Å respectively. The telescope resolution equals 0.22″ so that at Hα + 2 Å the structure is extremely small. The drawings in Figure 1 show typical sizes of the crinkles and network patterns in the filigree.(ii)Contrast: Filigree is enhanced in the blue wing of the Hα line. Measured contrast, uncorrected for seeing, equals 5–10%.(iii)Relation to the Granulation: The filigree structures tend to lie between the granules. This is, however, not a strict rule. It seems that in the course of their lifetime the granules move the filigree structures around with velocities of about 1.5 km s-1. Some of the crinkles also seem to wash out temporarily until compressed again by a new granule. The detailed structure of the filigree, therefore, changes significantly over times comparable to the granule lifetime. The overall structure is, however, preserved over much longer periods of time. The granulation pattern when observed in the continuum well outside the Hα line appears very peculiar in that it has substantially decreased in contrast. It appears ‘soft’ similar to granulation washed-out by seeing. This abnormal granulation can be traced over long times (> 30 min) and coincides in location to the filigree location. It is, therefore, definitely real.(iv)Relation to the spicules: The filigree structure falls near the center of the Hα chromospheric rosettes. These rosettes consist of dark elongated mottles which should probably be identified with spicules. There is, therefore, at least a coarse relation between the occurrence of spicules and the filigree. There is no clear evidence that variations in the filigree pattern are related to the generation of spicules. Some spicules seem to originate from the spaces between the crinkles. Too few, however, to conclude a definite relation.(v)Relation to the magnetic field: Beckers studied the filigree with the Universal Birefringent Filter in the magnesium b1 and b2 lines. It is very well visible in the far wing of the lines (eg. b1 ±0.8 Å). When traced into the line core the structures increase somewhat in size, as they do in Hα, and form structures similar to, and perhaps identical with, the so-called photospheric network. In the magnetically sensitive b2 line one sees a one-to-one correspondence between these network structures and the magnetic field so that, at least in the layers seen near the core of the b2 line, there is a one-to-one correspondence between the filigree structures and the enhancements in the magnetic field. Simon and Zirker (Solar Physics, submitted for publication) using a spectrograph also found that the filigree occurs in regions of enhanced magnetic field. However, in contrast to the filter observations, they found the magnetic field regions to be much more diffuse (2–3″) so that there is not a one-to-one spatial correspondence between filigree and magnetic field structure.


1995 ◽  
Vol 13 (4) ◽  
pp. 503-510 ◽  
Author(s):  
O. Renner ◽  
E. Krouský ◽  
T. Mißalla ◽  
E. Förster ◽  
G. Hölzer

A vertical dispersion variant of the Johann spectrometer has been used to record the highresolution X-ray spectra of the chlorine He-like resonance line group emitted from lowradiance plasma. The emission profiles were measured at two observation angles and decomposed into single spectral lines by using a fit based on the Levenberg-Marquardt algorithm. The results of computerized analysis of the one-dimensional (1-D) spatially resolved spectra were used to evaluate the distribution of the main plasma parameters. The electron temperature gradient 7.5·104 eV cm-1 was computed by modeling the measured spectra with the collisional-radiative package RATION. The blowoff maximum velocities 4.2–6.1·107 cm s-1 and the velocity gradients 0.9–1.6·109 s-1 were determined from the Doppler shifts of individual spectral lines within their different spatial extent.


Sign in / Sign up

Export Citation Format

Share Document