scholarly journals The Solar Orbiter Radio and Plasma Waves (RPW) instrument

2020 ◽  
Vol 642 ◽  
pp. A12 ◽  
Author(s):  
M. Maksimovic ◽  
S. D. Bale ◽  
T. Chust ◽  
Y. Khotyaintsev ◽  
V. Krasnoselskikh ◽  
...  

The Radio and Plasma Waves (RPW) instrument on the ESA Solar Orbiter mission is described in this paper. This instrument is designed to measure in-situ magnetic and electric fields and waves from the continuous to a few hundreds of kHz. RPW will also observe solar radio emissions up to 16 MHz. The RPW instrument is of primary importance to the Solar Orbiter mission and science requirements since it is essential to answer three of the four mission overarching science objectives. In addition RPW will exchange on-board data with the other in-situ instruments in order to process algorithms for interplanetary shocks and type III langmuir waves detections.

2020 ◽  
Author(s):  
Milan Maksimovic ◽  
Jan Souček ◽  
Stuart D. Bale ◽  
Xavier Bonnin ◽  
Thomas Chust ◽  
...  

<p>We will review the instrumental capabilities of the Radio and Plasma Waves (RPW) Instrument on Solar Orbiter which at the time of writing this abstract is planned for a launch on February 5<sup>th</sup> 2020. This instrument is designed to measure in-situ magnetic and electric fields and waves from 'DC' to a few hundreds of kHz. RPW will also observe solar radio emissions up to 16 MHz. The RPW instrument is of primary importance to the Solar Orbiter mission and science requirements, since it is essential to answer three of the four mission overarching science objectives. In addition, RPW will exchange on-board data with the other in-situ instruments, in order to process algorithms for interplanetary shocks and type III Langmuir waves detections. If everything goes well after the launch, we will hopefully be able to present the first RPW data and results gathered during the commissioning.</p>


2021 ◽  
Author(s):  
Milan Maksimovic ◽  

<p>We will review the very latest observations and results obtained by the Radio and Plasma Waves (RPW) Instrument on the recently launched Solar Orbiter mission. RPW is designed to measure in-situ magnetic and electric fields and waves from 'DC' to a few hundreds of kHz. RPW is also capable of measuring solar radio emissions up to 16 MHz and link them to solar flares observed by the onboard remote sensing instruments. The latest results we will present concern a wide range of phenomena including: Langmuir and Whistler Waves, dust impacts, Solar Type III bursts and observations during the recently visited Venus environment.</p>


2009 ◽  
Vol 5 (S264) ◽  
pp. 279-281
Author(s):  
Reinaldo R. Rosa ◽  
Mauricio J. A. Bolzan ◽  
Francisco C. R. Fernandes ◽  
H. S. Sawant ◽  
Marian Karlický

AbstractThe solar radio emissions in the decimetric frequency range (above 1 GHz) are very rich in temporal and spectral fine structures due to nonlinear processes occurring in the magnetic structures on the corresponding active regions. In this paper we characterize the singularity spectrum, f(α), for solar bursts observed at 1.6, 2.0 and 3 GHz. We interpret our findings as evidence of inhomogeneous plasma turbulence driving the underlying plasma emission process and discuss the nonlinear multifractal approach into the context of geoeffective solar active regions.


2000 ◽  
Vol 17 (1) ◽  
pp. 22-34 ◽  
Author(s):  
Iver H. Cairns ◽  
P. A. Robinson ◽  
G. P. Zank

AbstractType II and III solar radio bursts are associated with shock waves and streams of energetic electrons, respectively, which drive plasma waves and radio emission at multiples of the electron plasma frequency as they move out from the corona into the interplanetary medium. Analogous plasma waves and radiation are observed from the foreshock region upstream of Earth's bow shock. In situ spacecraft observations in the solar wind have enabled major progress to be made in developing quantitative theories for these phenomena that are consistent with available data. Similar processes are believed responsible for radio emissions at 2–3 kHz that originate in the distant heliosphere, from where the solar wind interacts with the local interstellar medium. The primary goal of this paper is to review the observations and theories for these four classes of emissions, focusing on recent progress in developing detailed theories for the plasma waves and radiation in the source regions. The secondary goal is to introduce and review stochastic growth theory, a recent theory which appears quantitatively able to explain the wave observations in type III bursts and Earth's foreshock and is a natural theory to apply to type II bursts, the outer heliospheric emissions, and perhaps astrophysicalemissions.


1980 ◽  
Vol 86 ◽  
pp. 299-302
Author(s):  
T. Takakura

By the use of semi-analytical method, modeling of three kinds of type III solar radio bursts have been made. Many basic problems about the type III bursts and associated solar electrons have been solved showing some striking or unexpected results. If the fundamental radio emissions should be really observed as the normal type III bursts, the emission mechanism would not be the currently accepted one, i.e. the scattering of plasma waves by ions.


2005 ◽  
Vol 35 (5) ◽  
pp. 739-754 ◽  
Author(s):  
J.-P. Raulin ◽  
A.A. Pacini

Nature ◽  
1948 ◽  
Vol 161 (4082) ◽  
pp. 134-136 ◽  
Author(s):  
I. L. THOMSEN

2017 ◽  
Vol 65 (12) ◽  
pp. 6624-6635 ◽  
Author(s):  
Ahmed Iyanda Sulyman ◽  
Hussein Seleem ◽  
Abdulmalik Alwarafy ◽  
Khaled M. Humadi ◽  
Abdulhameed Alsanie

Sign in / Sign up

Export Citation Format

Share Document