The Radio and Plasma Waves (RPW) Instrument on Solar Orbiter: latest observations and results

Author(s):  
Milan Maksimovic ◽  

<p>We will review the very latest observations and results obtained by the Radio and Plasma Waves (RPW) Instrument on the recently launched Solar Orbiter mission. RPW is designed to measure in-situ magnetic and electric fields and waves from 'DC' to a few hundreds of kHz. RPW is also capable of measuring solar radio emissions up to 16 MHz and link them to solar flares observed by the onboard remote sensing instruments. The latest results we will present concern a wide range of phenomena including: Langmuir and Whistler Waves, dust impacts, Solar Type III bursts and observations during the recently visited Venus environment.</p>

2020 ◽  
Author(s):  
Milan Maksimovic ◽  
Jan Souček ◽  
Stuart D. Bale ◽  
Xavier Bonnin ◽  
Thomas Chust ◽  
...  

<p>We will review the instrumental capabilities of the Radio and Plasma Waves (RPW) Instrument on Solar Orbiter which at the time of writing this abstract is planned for a launch on February 5<sup>th</sup> 2020. This instrument is designed to measure in-situ magnetic and electric fields and waves from 'DC' to a few hundreds of kHz. RPW will also observe solar radio emissions up to 16 MHz. The RPW instrument is of primary importance to the Solar Orbiter mission and science requirements, since it is essential to answer three of the four mission overarching science objectives. In addition, RPW will exchange on-board data with the other in-situ instruments, in order to process algorithms for interplanetary shocks and type III Langmuir waves detections. If everything goes well after the launch, we will hopefully be able to present the first RPW data and results gathered during the commissioning.</p>


2020 ◽  
Vol 642 ◽  
pp. A12 ◽  
Author(s):  
M. Maksimovic ◽  
S. D. Bale ◽  
T. Chust ◽  
Y. Khotyaintsev ◽  
V. Krasnoselskikh ◽  
...  

The Radio and Plasma Waves (RPW) instrument on the ESA Solar Orbiter mission is described in this paper. This instrument is designed to measure in-situ magnetic and electric fields and waves from the continuous to a few hundreds of kHz. RPW will also observe solar radio emissions up to 16 MHz. The RPW instrument is of primary importance to the Solar Orbiter mission and science requirements since it is essential to answer three of the four mission overarching science objectives. In addition RPW will exchange on-board data with the other in-situ instruments in order to process algorithms for interplanetary shocks and type III langmuir waves detections.


2000 ◽  
Vol 17 (1) ◽  
pp. 22-34 ◽  
Author(s):  
Iver H. Cairns ◽  
P. A. Robinson ◽  
G. P. Zank

AbstractType II and III solar radio bursts are associated with shock waves and streams of energetic electrons, respectively, which drive plasma waves and radio emission at multiples of the electron plasma frequency as they move out from the corona into the interplanetary medium. Analogous plasma waves and radiation are observed from the foreshock region upstream of Earth's bow shock. In situ spacecraft observations in the solar wind have enabled major progress to be made in developing quantitative theories for these phenomena that are consistent with available data. Similar processes are believed responsible for radio emissions at 2–3 kHz that originate in the distant heliosphere, from where the solar wind interacts with the local interstellar medium. The primary goal of this paper is to review the observations and theories for these four classes of emissions, focusing on recent progress in developing detailed theories for the plasma waves and radiation in the source regions. The secondary goal is to introduce and review stochastic growth theory, a recent theory which appears quantitatively able to explain the wave observations in type III bursts and Earth's foreshock and is a natural theory to apply to type II bursts, the outer heliospheric emissions, and perhaps astrophysicalemissions.


1961 ◽  
Vol 16 (8) ◽  
pp. 520-538 ◽  
Author(s):  
Hendrik Zech

Crystalline or paracrystalline tobacco mosaic virus (TMV) inclusions are known to be composed mainly of densely packed TMV-rods. These inclusions were studied in situ within infected tobacco leaf hair cells by scanning UV-microspectrophotometry. Comparative measurements in the macroand micro ranges of the instruments were carried out on purified TMV at low and high concentrations, on its separated and reconstituted RNA and protein parts and on isolated TMV-crystals, to permit the interpretation of the optical properties of TMV inclusions in situ. The optical absorbance of TMV in solution and in dried concentrates at room temperature could in part be attributed to distribution inhomogeneities caused by local particle aggregations being oriented to differing degrees. The resulting non-uniform electric fields around and within such unevenly distributed particle complexes caused local jumps of the refraction index and thereby unspecific light losses, chiefly through scattering. The apparent deviation from Beers law was found to be greatest at particle concentrations of 1 - 2 per cent. At higher concentrations the contribution of scatter to light losses was found to decrease again, probably because of increasing order of particles within the aggregates. On the other hand the specific absorbance of the chromophores of TMV over a wide range of concentration was not affected to a measurable degree by changing the distances between the rods. There was no indication that the charged groups of the RNA-cores within intact particles interacted with charged groups of other particles however great their proximity. The ribose phosphate backbone of the RNA strand, deeply embedded within the protein helix, may account for this phenomenon. However, isolated TMV-RNA reacted strongly to changes of the surrounding electric fields when concentrations were varied, and showed pronounced hypochromicity at higher concentrations and following prolonged irridation by x-rays and UV-light. RNA in dried and irradiated droplets was characterized by up to 55% lower extinction coefficients than freshly prepared RNA in solution. The hyprochromic effects caused by irradiation were shown to be almost, but not completely reversible. Hypochromicity increased towards the shorter wavelengths, diminishing the ratio E260/E280 from about 2.0 for diluted RNA to 1.4 for concentrated specimens. Mixing TMV-protein subunits with RNA before drying, leading to partial reconstitution of TMV particles, diminished the hypochromic effect resulting from irradiation of the concentrate. High UV-radiation doses applied to concentrated TMV solutions led to a marked splitting of RNA from protein, as revealed by UV-spectrophotometry of the supernatants and pellets of centrifuged irradiated specimens. Model measurements of intracellular and subsequently isolated TMV crystals combined with empirically derived parameters led to the construction of a correction curve, permitting interpretations of optical measurements on in situ TMV inclusion bodies.


Author(s):  
W. E. King

A side-entry type, helium-temperature specimen stage that has the capability of in-situ electrical-resistivity measurements has been designed and developed for use in the AEI-EM7 1200-kV electron microscope at Argonne National Laboratory. The electrical-resistivity measurements complement the high-voltage electron microscope (HVEM) to yield a unique opportunity to investigate defect production in metals by electron irradiation over a wide range of defect concentrations.A flow cryostat that uses helium gas as a coolant is employed to attain and maintain any specified temperature between 10 and 300 K. The helium gas coolant eliminates the vibrations that arise from boiling liquid helium and the temperature instabilities due to alternating heat-transfer mechanisms in the two-phase temperature regime (4.215 K). Figure 1 shows a schematic view of the liquid/gaseous helium transfer system. A liquid-gas mixture can be used for fast cooldown. The cold tip of the transfer tube is inserted coincident with the tilt axis of the specimen stage, and the end of the coolant flow tube is positioned without contact within the heat exchanger of the copper specimen block (Fig. 2).


2013 ◽  
Vol 16 (1) ◽  
pp. 59-67

<p>The Soil Science Institute of Thessaloniki produces new digitized Soil Maps that provide a useful electronic database for the spatial representation of the soil variation within a region, based on in situ soil sampling, laboratory analyses, GIS techniques and plant nutrition mathematical models, coupled with the local land cadastre. The novelty of these studies is that local agronomists have immediate access to a wide range of soil information by clicking on a field parcel shown in this digital interface and, therefore, can suggest an appropriate treatment (e.g. liming, manure incorporation, desalination, application of proper type and quantity of fertilizer) depending on the field conditions and cultivated crops. A specific case study is presented in the current work with regards to the construction of the digitized Soil Map of the regional unit of Kastoria. The potential of this map can easily be realized by the fact that the mapping of the physicochemical properties of the soils in this region provided delineation zones for differential fertilization management. An experiment was also conducted using remote sensing techniques for the enhancement of the fertilization advisory software database, which is a component of the digitized map, and the optimization of nitrogen management in agricultural areas.</p>


2020 ◽  
Vol 24 (8) ◽  
pp. 900-908
Author(s):  
Ram Naresh Yadav ◽  
Amrendra K Singh ◽  
Bimal Banik

Numerous O (oxa)- and S (thia)-glycosyl esters and their analogous glycosyl acids have been accomplished through stereoselective glycosylation of various peracetylated bromo sugar with benzyl glycolate using InBr3 as a glycosyl promotor followed by in situ hydrogenolysis of resulting glycosyl ester. A tandem glycosylating and hydrogenolytic activity of InBr3 has been successfully investigated in a one-pot procedure. The resulting synthetically valuable and virtually unexplored class of β-CMGL (glycosyl acids) could serve as an excellent potential chiral auxiliary in the asymmetric synthesis of a wide range of enantiomerically pure medicinally prevalent β-lactams and other bioactive molecules of diverse medicinal interest.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1031
Author(s):  
Joseba Gorospe ◽  
Rubén Mulero ◽  
Olatz Arbelaitz ◽  
Javier Muguerza ◽  
Miguel Ángel Antón

Deep learning techniques are being increasingly used in the scientific community as a consequence of the high computational capacity of current systems and the increase in the amount of data available as a result of the digitalisation of society in general and the industrial world in particular. In addition, the immersion of the field of edge computing, which focuses on integrating artificial intelligence as close as possible to the client, makes it possible to implement systems that act in real time without the need to transfer all of the data to centralised servers. The combination of these two concepts can lead to systems with the capacity to make correct decisions and act based on them immediately and in situ. Despite this, the low capacity of embedded systems greatly hinders this integration, so the possibility of being able to integrate them into a wide range of micro-controllers can be a great advantage. This paper contributes with the generation of an environment based on Mbed OS and TensorFlow Lite to be embedded in any general purpose embedded system, allowing the introduction of deep learning architectures. The experiments herein prove that the proposed system is competitive if compared to other commercial systems.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Sungmin O. ◽  
Rene Orth

AbstractWhile soil moisture information is essential for a wide range of hydrologic and climate applications, spatially-continuous soil moisture data is only available from satellite observations or model simulations. Here we present a global, long-term dataset of soil moisture derived through machine learning trained with in-situ measurements, SoMo.ml. We train a Long Short-Term Memory (LSTM) model to extrapolate daily soil moisture dynamics in space and in time, based on in-situ data collected from more than 1,000 stations across the globe. SoMo.ml provides multi-layer soil moisture data (0–10 cm, 10–30 cm, and 30–50 cm) at 0.25° spatial and daily temporal resolution over the period 2000–2019. The performance of the resulting dataset is evaluated through cross validation and inter-comparison with existing soil moisture datasets. SoMo.ml performs especially well in terms of temporal dynamics, making it particularly useful for applications requiring time-varying soil moisture, such as anomaly detection and memory analyses. SoMo.ml complements the existing suite of modelled and satellite-based datasets given its distinct derivation, to support large-scale hydrological, meteorological, and ecological analyses.


Sign in / Sign up

Export Citation Format

Share Document