scholarly journals Expected performances of the Characterising Exoplanet Satellite (CHEOPS)

2020 ◽  
Vol 635 ◽  
pp. A23 ◽  
Author(s):  
D. Futyan ◽  
A. Fortier ◽  
M. Beck ◽  
D. Ehrenreich ◽  
A. Bekkelien ◽  
...  

Context. The CHaracterising ExOPlanet Satellite (CHEOPS) is a mission dedicated to the search for exoplanetary transits through high precision photometry of bright stars already known to host planets. The telescope will provide the unique capability of determining accurate radii for planets whose masses have already been measured from ground-based spectroscopic surveys. This will allow a first-order characterisation of the planets’ internal structure through the determination of the bulk density, providing direct insight into their composition. By identifying transiting exoplanets with high potential for in-depth characterisation, CHEOPS will also provide prime targets for future instruments suited to the spectroscopic characterisation of exoplanetary atmospheres. Aims. The CHEOPS simulator has been developed to perform detailed simulations of the data which is to be received from the CHEOPS satellite. It generates accurately simulated images that can be used to explore design options and to test the on-ground data processing, in particular, the pipeline producing the photometric time series. It is, thus, a critical tool for estimating the photometric performance expected in flight and to guide photometric analysis. It can be used to prepare observations, consolidate the noise budget, and asses the performance of CHEOPS in realistic astrophysical fields that are difficult to reproduce in the laboratory. Methods. The simulator has been implemented as a highly configurable tool called CHEOPSim, with a web-based user interface. Images generated by CHEOPSim take account of many detailed effects, including variations of the incident signal flux and backgrounds, and detailed modelling of the satellite orbit, pointing jitter and telescope optics, as well as the CCD response, noise and readout. Results. The simulator results presented in this paper have been used in the context of validating the data reduction processing chain, in which image time series generated by CHEOPSim were used to generate light curves for simulated planetary transits across real and simulated targets. Independent analysts were successfully able to detect the planets and measure their radii to an accuracy within the science requirements of the mission: for an Earth-sized planet with an orbital period of 50 days orbiting a Sun-like target with magnitude V = 6, the median measured value of the planet to star radius ratio, Rp/Rs, was 0.00923 ± 0.00054(stat) ± 0.00019(syst), compared to a true input value of 0.00916. For a Neptune-sized planet with an orbital period of 13 days orbiting a target with spectral type K5V and magnitude V = 12, the median measured value of Rp/Rs was 0.05038 ± 0.00061(stat) ± 0.00031(syst), compared to a true input value of 0.05.

2003 ◽  
Vol 12 (2) ◽  
Author(s):  
A. Bonanno ◽  
A. Frasca ◽  
A. F. Lanza ◽  
R. Ventura ◽  
B. Mignemi ◽  
...  

AbstractWe present analysis of the data collected during three years of photometric campaigns at the 91 cm Cassegrain telescope of the Catania Astrophysical Observatory to observe the pulsating subdwarf B star PG 1336-018. For this eclipsing binary system, we obtained a precise determination of the orbital period which turns out to be P = 0.10101599±0.00000002 days. Time-series photometry reveals pulsation periods near 174 and 184 seconds. We also discuss a preliminary analysis of the data obtained in 2002 for the pulsating subdwarf PG 1325+101.


2018 ◽  
Vol 619 ◽  
pp. L10 ◽  
Author(s):  
D. Gandolfi ◽  
O. Barragán ◽  
J. H. Livingston ◽  
M. Fridlund ◽  
A. B. Justesen ◽  
...  

We report on the confirmation and mass determination of π Men c, the first transiting planet discovered by NASA’s TESS space mission. π Men is a naked-eye (V = 5.65 mag), quiet G0 V star that was previously known to host a sub-stellar companion (π Men b) on a longperiod (Porb = 2091 days), eccentric (e = 0.64) orbit. Using TESS time-series photometry, combined with Gaia data, published UCLES at AAT Doppler measurements, and archival HARPS at ESO-3.6m radial velocities, we found that π Men c is a close-in planet with an orbital period of Porb = 6.27 days, a mass of Mc = 4.52 ± 0.81 M⊕, and a radius of Rc = 2.06 ± 0.03 R⊕. Based on the planet’s orbital period and size, π Men c is a super-Earth located at, or close to, the radius gap, while its mass and bulk density suggest it may have held on to a significant atmosphere. Because of the brightness of the host star, this system is highly suitable for a wide range of further studies to characterize the planetary atmosphere and dynamical properties. We also performed an asteroseismic analysis of the TESS data and detected a hint of power excess consistent with the seismic values expected for this star, although this result depends on the photometric aperture used to extract the light curve. This marginal detection is expected from pre-launch simulations hinting at the asteroseismic potential of the TESS mission for longer, multi-sector observations and/or for more evolved bright stars.


Author(s):  
Stuart McKernan

For many years the concept of quantitative diffraction contrast experiments might have consisted of the determination of dislocation Burgers vectors using a g.b = 0 criterion from several different 2-beam images. Since the advent of the personal computer revolution, the available computing power for performing image-processing and image-simulation calculations is enormous and ubiquitous. Several programs now exist to perform simulations of diffraction contrast images using various approximations. The most common approximations are the use of only 2-beams or a single systematic row to calculate the image contrast, or calculating the image using a column approximation. The increasing amount of literature showing comparisons of experimental and simulated images shows that it is possible to obtain very close agreement between the two images; although the choice of parameters used, and the assumptions made, in performing the calculation must be properly dealt with. The simulation of the images of defects in materials has, in many cases, therefore become a tractable problem.


Author(s):  
C. J. D. Hetherington

Most high resolution images are not directly interpretable but must be compared with simulations based on model atomic structures and appropriate imaging conditions. Typically, the only parameters that are adjusted, in addition to the structure models, are crystal thickness and microscope defocus. Small tilts of the crystal away from the exact zone axis have only rarely been considered. It is shown here that, in the analysis of an image of a silicon twin intersection, the crystal tilt could be accurately estimated and satisfactorily included in the simulations.The micrograph shown in figure 1 was taken as part of an HREM study of indentation-induced hexagonal silicon. In this instance, the intersection of two twins on different habit planes has driven the silicon into hexagonal stacking. However, in order to confirm this observation, and in order to investigate other defects in the region, it has been necessary to simulate the image taking into account the very apparent crystal tilt. The inability to orientate the specimen at the exact [110] zone was influenced by i) the buckling of the specimen caused by strains at twin intersections, ii) the absence of Kikuchi lines or a clearly visible Laue circle in the diffraction pattern of the thin specimen and iii) the avoidance of radiation damage (which had marked effects on images taken a few minutes later following attempts to realign the crystal.) The direction of the crystal tilt was estimated by observing which of the {111} planes remained close to edge-on to the beam and hence strongly imaged. Further refinement of the direction and magnitude of the tilt was done by comparing simulated images to experimental images in a through-focal series. The presence of three different orientations of the silicon lattice aided the unambiguous determination of the tilt. The final estimate of a 0.8° tilt in the 200Å thick specimen gives atomic columns a projected width of about 3Å.


2020 ◽  
pp. 1-14
Author(s):  
Richard D. Ray ◽  
Kristine M. Larson ◽  
Bruce J. Haines

Abstract New determinations of ocean tides are extracted from high-rate Global Positioning System (GPS) solutions at nine stations sitting on the Ross Ice Shelf. Five are multi-year time series. Three older time series are only 2–3 weeks long. These are not ideal, but they are still useful because they provide the only in situ tide observations in that sector of the ice shelf. The long tide-gauge observations from Scott Base and Cape Roberts are also reanalysed. They allow determination of some previously neglected tidal phenomena in this region, such as third-degree tides, and they provide context for analysis of the shorter datasets. The semidiurnal tides are small at all sites, yet M2 undergoes a clear seasonal cycle, which was first noted by Sir George Darwin while studying measurements from the Discovery expedition. Darwin saw a much larger modulation than we observe, and we consider possible explanations - instrumental or climatic - for this difference.


Landslides ◽  
2021 ◽  
Author(s):  
Chuang Song ◽  
Chen Yu ◽  
Zhenhong Li ◽  
Veronica Pazzi ◽  
Matteo Del Soldato ◽  
...  

AbstractInterferometric Synthetic Aperture Radar (InSAR) enables detailed investigation of surface landslide movements, but it cannot provide information about subsurface structures. In this work, InSAR measurements were integrated with seismic noise in situ measurements to analyse both the surface and subsurface characteristics of a complex slow-moving landslide exhibiting multiple failure surfaces. The landslide body involves a town of around 6000 inhabitants, Villa de la Independencia (Bolivia), where extensive damages to buildings have been observed. To investigate the spatial-temporal characteristics of the landslide motion, Sentinel-1 displacement time series from October 2014 to December 2019 were produced. A new geometric inversion method is proposed to determine the best-fit sliding direction and inclination of the landslide. Our results indicate that the landslide is featured by a compound movement where three different blocks slide. This is further evidenced by seismic noise measurements which identified that the different dynamic characteristics of the three sub-blocks were possibly due to the different properties of shallow and deep slip surfaces. Determination of the slip surface depths allows for estimating the overall landslide volume (9.18 · 107 m3). Furthermore, Sentinel-1 time series show that the landslide movements manifest substantial accelerations in early 2018 and 2019, coinciding with increased precipitations in the late rainy season which are identified as the most likely triggers of the observed accelerations. This study showcases  the potential of integrating InSAR and seismic noise techniques to understand the landslide mechanism from ground to subsurface.


Author(s):  
Reinhold Steinacker

AbstractTime series with a significant trend, as is now being the case for the temperature in the course of climate change, need a careful approach for statistical evaluations. Climatological means and moments are usually taken from past data which means that the statistics does not fit to actual data anymore. Therefore, we need to determine the long-term trend before comparing actual data with the actual climate. This is not an easy task, because the determination of the signal—a climatic trend—is influenced by the random scatter of observed data. Different filter methods are tested upon their quality to obtain realistic smoothed trends of observed time series. A new method is proposed, which is based on a variational principle. It outperforms other conventional methods of smoothing, especially if periodic time series are processed. This new methodology is used to test, how extreme the temperature of 2018 in Vienna actually was. It is shown that the new annual temperature record of 2018 is not too extreme, if we consider the positive trend of the last decades. Also, the daily mean temperatures of 2018 are not found to be really extreme according to the present climate. The real extreme of the temperature record of Vienna—and many other places around the world—is the strongly increased positive temperature trend over the last years.


2011 ◽  
Vol 49 (12) ◽  
pp. 5150-5165 ◽  
Author(s):  
A. Pepe ◽  
P. Berardino ◽  
M. Bonano ◽  
L. D. Euillades ◽  
R. Lanari ◽  
...  

2018 ◽  
Vol 616 ◽  
pp. A186 ◽  
Author(s):  
F. Fürst ◽  
D. J. Walton ◽  
M. Heida ◽  
F. A. Harrison ◽  
D. Barret ◽  
...  

We present a timing analysis of multiple XMM-Newton and NuSTAR observations of the ultra-luminous pulsar NGC 7793 P13 spread over its 65 d variability period. We use the measured pulse periods to determine the orbital ephemeris, confirm a long orbital period with Porb = 63.9+0.5−0.6 d, and find an eccentricity of e ≤ 0.15. The orbital signature is imprinted on top of a secular spin-up, which seems to get faster as the source becomes brighter. We also analyze data from dense monitoring of the source with Swift and find an optical photometric period of 63.9 ± 0.5 d and an X-ray flux period of 66.8 ± 0.4 d. The optical period is consistent with the orbital period, while the X-ray flux period is significantly longer. We discuss possible reasons for this discrepancy, which could be due to a super-orbital period caused by a precessing accretion disk or an orbital resonance. We put the orbital period of P13 into context with the orbital periods implied for two other ultra-luminous pulsars, M82 X-2 and NGC 5907 ULX, and discuss possible implications for the system parameters.


Sign in / Sign up

Export Citation Format

Share Document