scholarly journals Formation and dynamics of transequatorial loops

2020 ◽  
Vol 640 ◽  
pp. A3
Author(s):  
Avyarthana Ghosh ◽  
Durgesh Tripathi

Aims. We aim to study the dynamical evolution of transequatorial loops (TELs) using imaging techniques and spectroscopy. Methods. We used the images recorded by the Atmospheric Imaging Assembly and the Helioseismic Magnetic Imager on board the Solar Dynamics Observatory together with spectroscopic observations taken from the Extreme-Ultraviolet Imaging Spectrometer on board Hinode. Results. The data from the AIA 193 Å channel show that TELs are formed between AR 12230 and a newly emerging AR 12234, evolving between 10 and 14 December 2014. The xt-plots for 12 December 2014, obtained using AIA 193 Å data, reveal signatures of inflow and outflow towards an X-region. High-cadence AIA images also show recurrent intensity enhancements in close proximity to the X-region (P2), which is observed to have higher intensities for spectral lines that are formed at log T[K] = 6.20 and voids at other higher temperatures. The electron densities and temperatures in the X-region (and P2) are maintained steadily at log Ne= 8.5–8.7 cm−3 and log T[K] = 6.20, respectively. Doppler velocities in the X-region show predominant redshifts by about 5–8 km s−1 when they are closer to the disk center but blueshifts (along with some zero-velocity pixels) when away from the center. The full-width-half-maximum maps reveal non-thermal velocities of about 27–30 km s−1 for Fe XII, Fe XIII, and Fe XV lines. However, the brightest pixels have nonthermal velocities ∼62 km s−1 for Fe XII and Fe XIII lines. On the contrary, the dark X-region for Fe XV line have the highest non-thermal velocity (∼115 km s−1). Conclusions. We conclude that the TELs are formed due to magnetic reconnection. We further note that the TELs themselves undergo magnetic reconnection, which leads to the re-formation of loops among individual ARs. Moreover, this study, for the first time, provides measurements of plasma parameters in X-regions, thereby providing essential constraints for theoretical studies.

2015 ◽  
Vol 11 (S320) ◽  
pp. 185-190
Author(s):  
Bin Zhang ◽  
Jun Zhang ◽  
Shuhong Yang ◽  
Ting Li ◽  
Yuzong Zhang ◽  
...  

AbstractUsing the Solar Dynamics Observatory observations, we study the evolution of an emerging active region (EAR) and its reconnection with the quiet Sun. The EAR continuously interacts with the surrounding quiet region, and dark ribbons at the boundary of the EAR and the quiet Sun are observed. The extreme-ultraviolet observations show that the regions swept by the dark ribbons are brightened and the temperature increases. These results reveal that there exists an uninterrupted magnetic reconnection between the EAR and the quiet region and the released energy heats the corona of the quiet Sun. The dark ribbons are suggested to correspond to the interface of the reconnected fields and the undisturbed ones. The dark ribbon propagates outward, and this phenomenon is considered as a dark wave.


2019 ◽  
Vol 628 ◽  
pp. A134 ◽  
Author(s):  
U. Mitra-Kraev ◽  
G. Del Zanna

In this paper, we discuss the temperature distribution and evolution of a microflare, simultaneously observed by Hinode’s X-Ray Telescope (XRT), its Extreme Ultraviolet Imaging Spectrometer (EIS), as well as the Atmospheric Imaging Assembly (AIA) on-board the Solar Dynamics Observatory (SDO). Using EIS lines, we find that during peak emission the distribution is nearly isothermal and peaked around 4.5 MK. This temperature is in good agreement with that obtained from the XRT filter ratio, validating the use of XRT to study these small events, invisible to full-Sun X-ray monitors such as the Geostationary Operational Environmental Satellite (GOES). The increase in the estimated Fe XVIII emission in the AIA 94 Å band can mostly be explained with the small temperature increase from the background temperatures. The presence of Fe XVIII emission does not guarantee that temperatures of 7 MK are reached, as is often assumed. With the help of new atomic data, we also revisit the temperatures measured by a Solar and Heliospheric Observatory (SoHO) Solar Ultraviolet Measurements of Emitted Radiation (SUMER) observation of an active region that produced microflares, also finding low temperatures (3–4 MK) from an Fe XVIII/Ca XIV ratio.


2018 ◽  
Vol 615 ◽  
pp. A47 ◽  
Author(s):  
Srividya Subramanian ◽  
Vinay L. Kashyap ◽  
Durgesh Tripathi ◽  
Maria S. Madjarska ◽  
John G. Doyle

We study the thermal structure and energetics of the point-like extreme ultraviolet (EUV) brightenings within a system of fan loops observed in the active region AR 11520. These brightenings were simultaneously observed on 2012 July 11 by the High-resolution Coronal (Hi-C) imager and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). We identified 27 brightenings by automatically determining intensity enhancements in both Hi-C and AIA 193 Å light curves. The energetics of these brightenings were studied using the Differential Emission Measure (DEM) diagnostics. The DEM weighted temperatures of these transients are in the range log T(K) = 6.2−6.6 with radiative energies ≈1024−25 ergs and densities approximately equal to a few times 109 cm−3. To the best of our knowledge, these are the smallest brightenings in EUV ever detected. We used these results to determine the mechanism of energy loss in these brightenings. Our analysis reveals that the dominant mechanism of energy loss for all the identified brightenings is conduction rather than radiation.


2019 ◽  
Vol 627 ◽  
pp. L5 ◽  
Author(s):  
L. P. Chitta ◽  
H. Peter ◽  
L. Li

A solar filament is a dense cool condensation that is supported and thermally insulated by magnetic fields in the rarefied hot corona. Its evolution and stability, leading to either an eruption or disappearance, depend on its coupling with the surrounding hot corona through a thin transition region, where the temperature steeply rises. However, the heating and dynamics of this transition region remain elusive. We report extreme-ultraviolet observations of quiescent filaments from the Solar Dynamics Observatory that reveal prominence spicules propagating through the transition region of the filament-corona system. These thin needle-like jet features are generated and heated to at least 0.7 MK by turbulent motions of the material in the filament. We suggest that the prominence spicules continuously channel the heated mass into the corona and aid in the filament evaporation and decay. Our results shed light on the turbulence-driven heating in magnetized condensations that are commonly observed on the Sun and in the interstellar medium.


2011 ◽  
Vol 7 (S286) ◽  
pp. 238-241
Author(s):  
Federico A. Nuevo ◽  
Alberto M. Vásquez ◽  
Richard A. Frazin ◽  
Zhenguang Huang ◽  
Ward B. Manchester

AbstractWe recently extended the differential emission measure tomography (DEMT) technique to be applied to the six iron bands of the Atmospheric Imaging Assembly (AIA) instrument aboard the Solar Dynamics Observatory (SDO). DEMT products are the 3D reconstruction of the coronal emissivity in the instrument's bands, and the 3D distribution of the local differential emission measure, in the height range 1.0 to 1.25 R⊙. We show here derived maps of the electron density and temperature of the inner solar corona during the rising phase of solar Cycle 24. We discuss the distribution of our results in the context of open/closed magnetic regions, as derived from a global potential field source surface (PFSS) model of the same period. We also compare the results derived with SDO/AIA to those derived with the Extreme UltraViolet Imager (EUVI) instrument aboard the Solar TErrestrial RElations Observatory (STEREO).


2020 ◽  
Vol 638 ◽  
pp. A32 ◽  
Author(s):  
Q. M. Zhang ◽  
J. Dai ◽  
Z. Xu ◽  
D. Li ◽  
L. Lu ◽  
...  

Aims. We report our multiwavelength observations of two homologous circular-ribbon flares in active region 11991 on 2014 March 5, focusing on the transverse oscillations of an extreme-ultraviolet (EUV) loop excited by the flares. Methods. The flares were observed in ultraviolet and EUV wavelengths by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory spacecraft. These flares were also observed in Hα line center by the 1 m New Vacuum Solar Telescope. Soft X-ray fluxes of the flares in 0.5–4 and 1–8 Å were recorded by the GOES spacecraft. Results. The transverse oscillations are of fast standing kink mode. The first-stage oscillation triggered by the C2.8 flare is decayless with lower amplitudes (310–510 km). The periods (115–118 s) in different wavelengths are nearly the same, indicating coherent oscillations. The magnetic field of the loop is estimated to be 65–78 G. The second-stage oscillation triggered by the M1.0 flare is decaying with larger amplitudes (1250–1280 km). The periods decrease from 117 s in 211 Å to 70 s in 171 Å, implying a decrease of loop length or an implosion after a gradual expansion. The damping time, which is 147–315 s, increases with the period, so that the values of τ/P are close to each other in different wavelengths. The thickness of the inhomogeneous layer is estimated to be ∼0″​​​.45 under the assumption of resonant absorption. Conclusions. This is the first observation of the excitation of two kink-mode loop oscillations by two sympathetic flares. The results are important to understand the excitation of kink oscillations of coronal loops and hence the energy balance in the solar corona. Our findings also validate the prevalence of significantly amplified amplitudes of oscillations by successive drivers.


2020 ◽  
Vol 640 ◽  
pp. A120
Author(s):  
C. J. Nelson ◽  
S. Krishna Prasad ◽  
M. Mathioudakis

Context. Downflows with potentially super-sonic velocities have been reported to occur in the transition region above many sunspots; however, how these signatures evolve over short time-scales in both spatial and spectral terms is still unknown and requires further research. Aims. In this article, we investigate the evolution of downflows detected within spectral lines sampling the transition region on time-scales of the order of minutes and we search for clues as to the formation mechanisms of these features in co-temporal imaging data. Methods. For the purposes of this article, we used high-resolution spectral and imaging data sampled by the Interface Region Imaging Spectrograph on the 20 and 21 May 2015 to identify and analyse downflows. Additionally, photospheric and coronal imaging data from the Hinode and Solar Dynamics Observatory satellites were studied to provide context about the wider solar atmosphere. Results. Four downflows were identified and analysed through time. The potential super-sonic components of these downflows had widths of around 2″ and were observed to evolve over time-scales of the order of minutes. The measured apparent downflow velocities were structured both in time and space, with the highest apparent velocities occurring above a bright region detected in Si IV 1400 Å images. Downflows with apparent velocities below the super-sonic threshold that was assumed here were observed to extend a few arcseconds away from the foot-points, suggesting that the potential super-sonic components are linked to larger-scale flows. The electron density and mass flux for these events were found to be within the ranges of 109.6–1010.2 cm−3 and 10−6.81–10−7.48 g cm−2 s−1, respectively. Finally, each downflow formed at the foot-point of thin “fingers”, extending out around 3–5″ in Si IV 1400 Å data with smaller widths (< 1″) than the super-sonic downflow components. Conclusions. Downflows can appear, disappear, and recur within time-scales of less than one hour in sunspots. As the potential super-sonic downflow signatures were detected at the foot-points of both extended fingers in Si IV 1400 SJI data and sub-sonic downflows in Si IV 1394 Å spectra, it is likely that these events are linked to larger-scale flows within structures such as coronal loops.


Solar Physics ◽  
2019 ◽  
Vol 294 (10) ◽  
Author(s):  
Stephan G. Heinemann ◽  
Manuela Temmer ◽  
Niko Heinemann ◽  
Karin Dissauer ◽  
Evangelia Samara ◽  
...  

Abstract Coronal holes are usually defined as dark structures seen in the extreme ultraviolet and X-ray spectrum which are generally associated with open magnetic fields. Deriving reliably the coronal hole boundary is of high interest, as its area, underlying magnetic field, and other properties give important hints as regards high speed solar wind acceleration processes and compression regions arriving at Earth. In this study we present a new threshold-based extraction method, which incorporates the intensity gradient along the coronal hole boundary, which is implemented as a user-friendly SSW-IDL GUI. The Collection of Analysis Tools for Coronal Holes (CATCH) enables the user to download data, perform guided coronal hole extraction and analyze the underlying photospheric magnetic field. We use CATCH to analyze non-polar coronal holes during the SDO-era, based on 193 Å filtergrams taken by the Atmospheric Imaging Assembly (AIA) and magnetograms taken by the Heliospheric and Magnetic Imager (HMI), both on board the Solar Dynamics Observatory (SDO). Between 2010 and 2019 we investigate 707 coronal holes that are located close to the central meridian. We find coronal holes distributed across latitudes of about ${\pm}\, 60^{\circ}$±60∘, for which we derive sizes between $1.6 \times 10^{9}$1.6×109 and $1.8 \times 10^{11}\mbox{ km}^{2}$1.8×1011 km2. The absolute value of the mean signed magnetic field strength tends towards an average of $2.9\pm 1.9$2.9±1.9 G. As far as the abundance and size of coronal holes is concerned, we find no distinct trend towards the northern or southern hemisphere. We find that variations in local and global conditions may significantly change the threshold needed for reliable coronal hole extraction and thus, we can highlight the importance of individually assessing and extracting coronal holes.


Sign in / Sign up

Export Citation Format

Share Document