scholarly journals Binary evolution along the red giant branch with BINSTAR: The barium star perspective

2020 ◽  
Vol 639 ◽  
pp. A24 ◽  
Author(s):  
A. Escorza ◽  
L. Siess ◽  
H. Van Winckel ◽  
A. Jorissen

Barium (Ba), CH, and extrinsic or Tc-poor S-type stars are evolved low- and intermediate-mass stars that show enhancement of slow-neutron-capture-process elements on their surface, an indication of mass accretion from a former asymptotic giant branch companion, which is now a white dwarf (WD). Ba and CH stars can be found in the main-sequence (MS), the sub-giant, and the giant phase, while extrinsic S-type stars populate the giant branches only. As these polluted stars evolve, they might be involved in a second phase of interaction with their now white dwarf companion. In this paper, we consider systems composed of a main-sequence Ba star and a WD companion when the former evolves along the red giant branch (RGB). We want to determine if the orbital properties of the known population of Ba, CH, and S giants can be inferred from the evolution of their suspected dwarf progenitors. For this purpose, we used the BINSTAR binary evolution code and model MS+WD binary systems, considering different binary interaction mechanisms, such as a tidally enhanced wind mass loss, and a reduced circularisation efficiency. To explore their impact on the second RGB ascent, we compared the modelled orbits with the observed period and eccentricity distributions of Ba and related giants. We show that, independently of the considered mechanism, there is a strong period cut-off below which core-He burning stars should not be found in binary systems with a WD companion. This limit is shorter for more massive RGB stars and for more metal-poor systems. However, we still find a few low-mass short-period giant systems that are difficult to explain with our models, as well as two systems with very high eccentricities.

1998 ◽  
Vol 11 (1) ◽  
pp. 16-27
Author(s):  
Brian Warner

The evolution of single stars on and away from the main sequence is well understood. A degenerate core is formed in a star as the star leaves the main sequence and expands to a giant with a radius typically 50 - 500 Ro . Observationally it is known that most stars are members of binary systems, and among these many have orbital periods less than 100 y. It can happen, therefore, that the expanding envelope of the primary of a binary system can reach to the secondary. As this happens, the primary fills its Roche tidal lobe and transfers matter to the secondary; if the primary has a radiative envelope the rate at which this occurs exceeds the Eddington limit of the secondary, which therefore repels the incoming gas, forming a common envelope around the two stars. Friction within the envelope causes the stars to spiral towards each other until the energy and angular momentum extracted from the binary orbit and transferred to the envelope are sufficient to eject the common envelope as a planetary nebula, leaving a short period binary comprising a white dwarf and a main sequence star. This mechanism of producing short period binaries containing white dwarfs, proposed by Ostriker and by Paczynski (1976), is the probable origin of the class of objects known as Cataclysmic Variable Stars (CVs), which encompass the classical novae, dwarf novae, novalike variables and a variety of related objects. Evidence has been accumulating for forty years (Crawford & Kraft 1956, Warner 1995a) that every CV consists of a secondary star (usually a dwarf, but a few systems contain giants) filling its Roche lobe and transferring mass to a white dwarf primary. In systems of normal chemical composition the orbital periods lie between 75 mins and ~250 d, with the majority having . A few hydrogen-free systems are known for which 17 mins < Porb < 50 mins. It should be noted that CVs are very compact binary systems: for h such a binary would fit inside the Sun.


2002 ◽  
Vol 187 ◽  
pp. 297-302
Author(s):  
Zhanwen Han ◽  
Philipp Podsiadlowski ◽  
Christopher A. Tout

AbstractUsing Eggleton’s code, we performed a series of binary evolution calculations in order to investigate the criterion for dynamical instability of mass transfer in binaries. In these calculations, we took the donor’s mass on the zero-age main sequence (ZAMS) from 0.8 to 1.9 M⊙. For each mass, we systematically varied the mass of the core at the beginning of mass transfer and the mass of the companion star. We assumed that mass transfer was completely non-conservative and that all the mass that was lost from the system carried with it the orbital angular momentum of the accreting component. We found that the critical mass ratio, above which mass transfer is dynamically unstable, is from 1.1 to 1.3 in these red-giant binary systems.


2019 ◽  
Vol 626 ◽  
pp. A128 ◽  
Author(s):  
A. Escorza ◽  
D. Karinkuzhi ◽  
A. Jorissen ◽  
L. Siess ◽  
H. Van Winckel ◽  
...  

Barium (Ba) dwarfs and CH subgiants are the less evolved analogues of Ba and CH giants. They are F- to G-type main-sequence stars polluted with heavy elements by their binary companions when the companion was on the asymptotic giant branch (AGB). This companion is now a white dwarf that in most cases cannot be directly detected. We present a large systematic study of 60 objects classified as Ba dwarfs or CH subgiants. Combining radial-velocity measurements from HERMES and SALT high-resolution spectra with radial-velocity data from CORAVEL and CORALIE, we determine the orbital parameters of 27 systems. We also derive their masses by comparing their location in the Hertzsprung–Russell diagram with evolutionary models. We confirm that Ba dwarfs and CH subgiants are not at different evolutionary stages, and that they have similar metallicities, despite their different names. Additionally, Ba giants appear significantly more massive than their main-sequence analogues. This is likely due to observational biases against the detection of hotter main-sequence post-mass-transfer objects. Combining our spectroscopic orbits with the HIPPARCOS astrometric data, we derive the orbital inclination and the mass of the WD companion for four systems. Since this cannot be done for all systems in our sample yet (but should be possible with upcoming Gaia data releases), we also analyse the mass-function distribution of our binaries. We can model this distribution with very narrow mass distributions for the two components and random orbital orientations on the sky. Finally, based on BINSTAR evolutionary models, we suggest that the orbital evolution of low-mass Ba systems can be affected by a second phase of interactions along the red giant branch of the Ba star, which impact the eccentricities and periods of the giants.


2018 ◽  
Vol 14 (S343) ◽  
pp. 394-395
Author(s):  
A. Escorza ◽  
L. Siess ◽  
D. Karinkuzhi ◽  
H. M. J. Boffin ◽  
A. Jorissen ◽  
...  

AbstractBarium (Ba) stars form via mass-transfer in binary systems, and can subsequently interact with their white dwarf companion in a second stage of binary interaction. We used observations of main-sequence Ba systems as input for our evolutionary models, and try to reproduce the orbits of the Ba giants. We show that to explain short and sometimes eccentric orbits, additional interaction mechanisms are needed along the RGB.


2018 ◽  
Vol 14 (S344) ◽  
pp. 94-95
Author(s):  
Yutaka Komiyama

AbstractWe have carried out a wide and deep imaging survey for the Local Group dwarf spheroidal galaxy Ursa Minor (UMi) using Hyper Suprime-Cam (HSC). The data cover out beyond the nominal tidal radius down to ~25 mag in i band, which is ~2 mag below the main sequence turn-off point. The structural parameters of UMi are derived using red giant branch (RGB) stars and sub-giant branch (SGB) stars, and the tidal radius is suggested to be larger than those estimated by the previous studies. It is also found that the distribution of bluer RGB/SGB stars is more extended than that of redder RGB/SGB stars. The fraction of binary systems is estimated to be ~0.4 from the morphology of the main sequences.


1998 ◽  
Vol 11 (1) ◽  
pp. 371-371
Author(s):  
S. Narusawa ◽  
A. Yamasaki ◽  
Y. Nakamura

Although the evolution of binary systems has been qualitatively interpreted with the evolutionary scenario, the quantitative interpretation of any observed system is still unsatisfactory due to the difficulty of the quantitative treatment of mass and angular momentum transfer/loss. To reach a true understanding of the evolution of binary systems, we have to accumulate more observational evidence. So far, we have observed several binaries that are short-period and noncontact, and found the existence of extremely small-mass systems. In the present paper, we study another short-period (P=0.659d), noncontact, eclipsing binary system, V392 Ori. We have made photometric and spectroscopic observations of V392 Ori. The light curves are found to vary, suggesting the existence of circumstellar matter around the system. Combining the photometric and spectroscopic results, we obtain parameters describing the system; we find the mass of the primary component is only 0.6Mʘ- undermassive for its spectral and luminosity class A5V, suggesting that a considerable amount of its original mass has been lost from the system during the course of evolution. The low-mass problem is very important for investigation of the evolution of close binary systems: largemass loss within and/or after the main-sequence will have a significant influence on the future evolution of binary systems.


2018 ◽  
Vol 619 ◽  
pp. A121 ◽  
Author(s):  
Jordi Casanova ◽  
Jordi José ◽  
Steven N. Shore

Context. Classical novae are explosive phenomena that take place in stellar binary systems. They are powered by mass transfer from a low-mass main sequence star onto either a CO or ONe white dwarf. The material accumulates for 104–105 yr until ignition under degenerate conditions, resulting in a thermonuclear runaway. The nuclear energy released produces peak temperatures of ∼0.1–0.4 GK. During these events, 10−7−10−3 M⊙ enriched in intermediate-mass elements, with respect to solar abundances, are ejected into the interstellar medium. However, the origin of the large metallicity enhancements and the inhomogeneous distribution of chemical species observed in high-resolution spectra of ejected nova shells is not fully understood. Aims. Recent multidimensional simulations have demonstrated that Kelvin-Helmholtz instabilities that operate at the core-envelope interface can naturally produce self-enrichment of the accreted envelope with material from the underlying white dwarf at levels that agree with observations. However, such multidimensional simulations have been performed for a small number of cases and much of the parameter space remains unexplored. Methods. We investigated the dredge-up, driven by Kelvin-Helmholtz instabilities, for white dwarf masses in the range 0.8–1.25 M⊙ and different core compositions, that is, CO-rich and ONe-rich substrates. We present a set of five numerical simulations performed in two dimensions aimed at analyzing the possible impact of the white dwarf mass, and composition, on the metallicity enhancement and explosion characteristics. Results. At the time we stop the simulations, we observe greater mixing (∼30% higher when measured in the same conditions) and more energetic outbursts for ONe-rich substrates than for CO-rich substrates and more massive white dwarfs.


2020 ◽  
Vol 498 (3) ◽  
pp. 3549-3559
Author(s):  
Aldo Mura-Guzmán ◽  
D Yong ◽  
C Abate ◽  
A Karakas ◽  
C Kobayashi ◽  
...  

ABSTRACT We present new fluorine abundance estimations in two carbon enhanced metal-poor (CEMP) stars, HE 1429−0551 and HE 1305+0007. HE 1429−0551 is also enriched in slow neutron-capture process (s-process) elements, a CEMP-s, and HE 1305+0007 is enhanced in both, slow and rapid neutron-capture process elements, a CEMP-s/r. The F abundances estimates are derived from the vibration–rotation transition of the HF molecule at 23358.6 Å  using high-resolution infrared spectra obtained with the Immersion Grating Infrared Spectrometer (IGRINS) at the 4-m class Lowell Discovery Telescope. Our results include an F abundance measurement in HE 1429−0551 of A(F) = +3.93 ([F/Fe] = +1.90) at [Fe/H] = −2.53, and an F upper limit in HE 1305+0007 of A(F) &lt; +3.28 ([F/Fe] &lt; +1.00) at [Fe/H] = −2.28. Our new derived F abundance in HE 1429−0551 makes this object the most metal-poor star where F has been detected. We carefully compare these results with literature values and state-of-the-art CEMP-s model predictions including detailed asymptotic giant branch (AGB) nucleosynthesis and binary evolution. The modelled fluorine abundance for HE 1429−0551 is within reasonable agreement with our observed abundance, although is slightly higher than our observed value. For HE 1429−0551, our findings support the scenario via mass transfer by a primary companion during its thermally pulsing phase. Our estimated upper limit in HE 1305+0007, along with data from the literature, shows large discrepancies compared with AGB models. The discrepancy is principally due to the simultaneous s- and r-process element enhancements which the model struggles to reproduce.


1981 ◽  
Vol 93 ◽  
pp. 155-175 ◽  
Author(s):  
E.P.J. van den Heuvel

The various ways in which compact objects (neutron stars and black holes) can be formed in interacting binary systems are qualitatively outlined on the basis of the three major modes of binary interaction identified by Webbink (1980). Massive interacting binary systems (M1 ≳ 10–12 M⊙) are, after the first phase of mass transfer expected to leave as remnants:(i) compact stars in massive binary systems (mass ≳ 10 M⊙) with a wide range of orbital periods, as remnants of quasi-conservative mass transfer; these systems later evolve into massive X-ray binaries.(ii) short-period compact star binaries (P ~ 1–2 days) in which the companion may be more massive or less massive than the compact object; these systems have high runaway velocities (≳ 100 km/sec) and start out with highly eccentric orbits, which are rapidly circularized by tidal forces; they may later evolve into low-mass X-ray binaries;(iii) single runaway compact objects with space velocities of ~ 102 to 4.102 km/sec; these are expected to be the most numerous compact remnants.Compact star binaries may also form from Cataclysmic binaries or wide binaries in which an O-Ne-Mg white dwarf is driven over the Chandrasekhar limit by accretion.


1989 ◽  
Vol 114 ◽  
pp. 408-412
Author(s):  
Rex A. Saffer ◽  
James Liebert

AbstractWe report on a search for short-period binary systems composed of pairs of evolved stars. The search is being carried out concurrently with a program to characterize the kinematical properties of two different samples of stars. Each sample has produced one close binary candidate for which further spectroscopic observations are planned. We also recapitulate the discovery of a close detached binary system composed of two cool DA white dwarfs, and we discuss the null results of Hα observations of the suspected white dwarf/brown dwarf system G 29–38.


Sign in / Sign up

Export Citation Format

Share Document